Ants, like many other animals, use visual memory to follow extended routes through complex environments, but it is unknown how their small brains implement this capability. The mushroom body neuropils have been identified as a crucial memory circuit in the insect brain, but their function has mostly been explored for simple olfactory association tasks. We show that a spiking neural model of this circuit originally developed to describe fruitfly (Drosophila melanogaster) olfactory association, can also account for the ability of desert ants (Cataglyphis velox) to rapidly learn visual routes through complex natural environments. We further demonstrate that abstracting the key computational principles of this circuit, which include one-shot learning of sparse codes, enables the theoretical storage capacity of the ant mushroom body to be estimated at hundreds of independent images.
Taxis behaviour in Drosophila larva is thought to consist of distinct control mechanisms triggering specific actions. Here, we support a simpler hypothesis: that taxis results from direct sensory modulation of continuous lateral oscillations of the anterior body, sparing the need for ‘action selection’. Our analysis of larvae motion reveals a rhythmic, continuous lateral oscillation of the anterior body, encompassing all head-sweeps, small or large, without breaking the oscillatory rhythm. Further, we show that an agent-model that embeds this hypothesis reproduces a surprising number of taxis signatures observed in larvae. Also, by coupling the sensory input to a neural oscillator in continuous time, we show that the mechanism is robust and biologically plausible. The mechanism provides a simple architecture for combining information across modalities, and explaining how learnt associations modulate taxis. We discuss the results in the light of larval neural circuitry and make testable predictions.DOI: http://dx.doi.org/10.7554/eLife.15504.001
Plasticity-inducing stimuli must typically be presented many times before synaptic plasticity is expressed, perhaps because induction signals gradually accumulate before overt strength changes occur. We consider memory dynamics in a mathematical model with synapses that integrate plasticity induction signals before expressing plasticity. We find that the memory trace initially rises before reaching a maximum and then falling. The memory signal dissociates into separate oblivescence and reminiscence components, with reminiscence initially dominating recall. In radical contrast, related but nonintegrative models exhibit only a highly problematic oblivescence. Synaptic integration mechanisms possess natural timescales, depending on the statistics of the induction signals. Together with neuromodulation, these timescales may therefore also begin to provide a natural account of the well-known spacing effect in the transition to late-phase plasticity. Finally, we propose experiments that could distinguish between integrative and nonintegrative synapses. Such experiments should further elucidate the synaptic signal processing mechanisms postulated by our model.
The Drosophila larva executes a stereotypical exploratory routine that appears to consist of stochastic alternation between straight peristaltic crawling and reorientation events through lateral bending. We present a model of larval mechanics for axial and transverse motion over a planar substrate, and use it to develop a simple, reflexive neuromuscular model from physical principles. The mechanical model represents the midline of the larva as a set of point masses which interact with each other via damped translational and torsional springs, and with the environment via sliding friction forces. The neuromuscular model consists of: 1. segmentally localised reflexes that amplify axial compression in order to counteract frictive energy losses, and 2. long-range mutual inhibition between reflexes in distant segments, enabling overall motion of the model larva relative to its substrate. In the absence of damping and driving, the mechanical model produces axial travelling waves, lateral oscillations, and unpredictable, chaotic deformations. The neuromuscular model counteracts friction to recover these motion patterns, giving rise to forward and backward peristalsis in addition to turning. Our model produces spontaneous exploration, even though the nervous system has no intrinsic pattern generating or decision making ability, and neither senses nor drives bending motions. Ultimately, our model suggests a novel view of larval exploration as a deterministic superdiffusion process which is mechanistically grounded in the chaotic mechanics of the body. We discuss how this may provide new interpretations for existing observations at the level of tissue-scale activity patterns and neural circuitry, and provide some experimental predictions that would test the extent to which the mechanisms we present translate to the real larva.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.