The prognosis of ICC is dictated mainly by tumor factors. Future research could focus on the usefulness of adjuvant treatment as well as other multidisciplinary treatment modalities.
SUMMARY Cachexia is a wasting syndrome associated with elevated basal energy expenditure and loss of adipose and muscle tissues. It accompanies many chronic diseases including renal failure and cancer and is an important risk factor for mortality. Our recent work demonstrated that tumor-derived PTHrP drives adipose tissue browning and cachexia. Here, we show that PTH is involved in stimulating a thermogenic gene program in 5/6 nephrectomized mice that suffer from cachexia. Fat-specific knockout of PTHR blocked adipose browning and wasting. Surprisingly, loss of PTHR in fat tissue also preserved muscle mass and improved muscle strength. Similarly, PTHR knockout mice were resistant to cachexia driven by tumors. Our results demonstrate that PTHrP and PTH mediate wasting through a common mechanism involving PTHR and there exists an unexpected crosstalk mechanism between wasting of fat tissue and skeletal muscle. Targeting the PTH/PTHrP pathway may have therapeutic uses in humans with cachexia.
Metabolic syndrome comprises a cluster of related disorders that includes obesity, glucose intolerance, insulin resistance, dyslipidemia, and fatty liver. Recently, gut-derived chronic endotoxemia has been identified as a primary mediator for triggering the low-grade inflammation responsible for the development of metabolic syndrome. In the present study we examined the role of the small intestinal brush-border enzyme, intestinal alkaline phosphatase (IAP), in preventing a high-fat-diet-induced metabolic syndrome in mice. We found that both endogenous and orally supplemented IAP inhibits absorption of endotoxin (lipopolysaccharides) that occurs with dietary fat, and oral IAP supplementation prevents as well as reverses metabolic syndrome. Furthermore, IAP supplementation improves the lipid profile in mice fed a standard, low-fat chow diet. These results point to a potentially unique therapy against metabolic syndrome in at-risk humans.etabolic syndrome is a complex syndrome composed of a cluster of disorders that includes obesity, glucose intolerance, insulin resistance, abnormal lipid profile (dyslipidemia), fatty liver, and hypertension (1, 2). Metabolic syndrome leads to type 2 diabetes, atherosclerosis, and nonalcoholic fatty liver disease (1, 2). Approximately 35-39% of the US population suffers from the syndrome (3). This epidemic of metabolic syndrome has devastating consequences in terms of mortality, morbidity, and total healthcare expenditures (4).Recently, "metabolic endotoxemia" has been proposed to be central to the pathogenesis of metabolic syndrome. The Gramnegative bacterial cell wall component lipopolysaccharide (LPS) is known as endotoxin, and metabolic endotoxemia is defined as a two-to threefold persistent increase in circulating endotoxin concentrations above the normal levels (5). Metabolic endotoxemia leads to low-grade systemic inflammation as evidenced by increased serum levels of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1, and IL-6 (5). It is well recognized that chronic inflammation causes damage to pancreatic beta cells (6), hepatocytes (7), and vascular endothelial cells (8), and dysfunction of these cells is thought to contribute to metabolic syndrome.A high-fat diet (HFD) has been shown to cause metabolic endotoxemia in animals and humans (5, 9), but the underlying molecular mechanisms remain incompletely understood. Ghoshal et al. (10) demonstrated that intestinal epithelial cells (enterocytes) internalize LPS from the apical surface, which is then transported to the Golgi apparatus where it complexes with chylomicrons, the lipoproteins that transport the absorbed longchain fatty acids in enterocytes. The chylomicron-LPS complex is then secreted into mesenteric lymph and makes its way into the systemic circulation. Excess chylomicron formation during highfat feeding leads to prolonged chylomicronemia (complexed with LPS) that ultimately induces systemic inflammation. Also, it has been shown that an HFD causes local intestinal inflammation (11). Systemic and local inf...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.