Accumulation of damaged mitochondria is a hallmark of aging and age-related neurodegeneration, including Alzheimer’s disease (AD). The molecular mechanisms of impaired mitochondrial homeostasis in AD are being investigated. Here we provide evidence that mitophagy is impaired in the hippocampus of AD patients, in induced pluripotent stem cell-derived human AD neurons, and in animal AD models. In both amyloid-β (Aβ) and tau Caenorhabditis elegans models of AD, mitophagy stimulation (through NAD+ supplementation, urolithin A, and actinonin) reverses memory impairment through PINK-1 (PTEN-induced kinase-1)-, PDR-1 (Parkinson’s disease-related-1; parkin)-, or DCT-1 (DAF-16/FOXO-controlled germline-tumor affecting-1)-dependent pathways. Mitophagy diminishes insoluble Aβ1–42 and Aβ1–40 and prevents cognitive impairment in an APP/PS1 mouse model through microglial phagocytosis of extracellular Aβ plaques and suppression of neuroinflammation. Mitophagy enhancement abolishes AD-related tau hyperphosphorylation in human neuronal cells and reverses memory impairment in transgenic tau nematodes and mice. Our findings suggest that impaired removal of defective mitochondria is a pivotal event in AD pathogenesis and that mitophagy represents a potential therapeutic intervention.
Apoptosis and necrosis are the two major modes of cell death, the molecular mechanisms of which have been extensively studied. Although initially thought to constitute mutually exclusive cellular states, recent findings reveal cellular contexts that require a balanced interplay between these two modes of cellular demise. Several death initiator and effector molecules, signaling pathways and subcellular sites have been identified as key mediators in both processes, either by constituting common modules or alternatively by functioning as a switch allowing cells to decide which route to take, depending on the specific situation. Importantly, autophagy, which is a predominantly cytoprotective process, has been linked to both types of cell death, serving either a pro-survival or pro-death function. Here we review the recent literature that highlights the intricate interplay between apoptosis, necrosis and autophagy, focusing on the relevance and impact of this crosstalk in normal development and in pathology. This article is part of a Special Section entitled: Cell Death Pathways.
Mitophagy is an evolutionarily conserved cellular process to remove dysfunctional or superfluous mitochondria, thus fine-tuning mitochondrial number and preserving energy metabolism. In this Review, we survey recent advances towards elucidating the molecular mechanisms that mediate mitochondrial elimination and the signalling pathways that govern mitophagy. We consider the contributions of mitophagy in physiological and pathological contexts and discuss emerging findings, highlighting the potential value of mitophagy modulation in therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.