Early detection and evaluation of children at risk of neurodevelopmental disorders and/or communication deficits is critical. While the current literature indicates a high prevalence of neurodevelopmental disorders, many children remain undiagnosed, resulting in missed opportunities for effective interventions that could have had a greater impact if administered earlier. Clinicians face a variety of complications during neurodevelopmental disorders’ evaluation procedures and must elevate their use of digital tools to aid in early detection efficiently. Artificial intelligence enables novelty in taking decisions, classification, and diagnosis. The current research investigates the efficacy of various machine learning approaches on the biometric SmartSpeech datasets. These datasets come from a new innovative system that includes a serious game which gathers children’s responses to specifically designed speech and language activities and their manifestations, intending to assist during the clinical evaluation of neurodevelopmental disorders. The machine learning approaches were used by utilizing the algorithms Radial Basis Function, Neural Network, Deep Learning Neural Networks, and a variation of Grammatical Evolution (GenClass). The most significant results show improved accuracy (%) when using the eye tracking dataset; more specifically: (i) for the class Disorder with GenClass (92.83%), (ii) for the class Autism Spectrum Disorders with Deep Learning Neural Networks layer 4 (86.33%), (iii) for the class Attention Deficit Hyperactivity Disorder with Deep Learning Neural Networks layer 4 (87.44%), (iv) for the class Intellectual Disability with GenClass (86.93%), (v) for the class Specific Learning Disorder with GenClass (88.88%), and (vi) for the class Communication Disorders with GenClass (88.70%). Overall, the results indicated GenClass to be nearly the top competitor, opening up additional probes for future studies toward automatically classifying and assisting clinical assessments for children with neurodevelopmental disorders.
Screening and evaluation of developmental disorders include complex and challenging procedures, exhibit uncertainties in the diagnostic fit, and require high clinical expertise. Although typically, clinicians’ evaluations rely on diagnostic instrumentation, child observations, and parents’ reports, these may occasionally result in subjective evaluation outcomes. Current advances in artificial intelligence offer new opportunities for decision making, classification, and clinical assessment. This study explores the performance of different neural network optimizers in biometric datasets for screening typically and non-typically developed children for speech and language communication deficiencies. The primary motivation was to give clinicians a robust tool to help them identify speech disorders automatically using artificial intelligence methodologies. For this reason, in this study, we use a new dataset from an innovative, recently developed serious game collecting various data on children’s speech and language responses. Specifically, we employed different neural network approaches such as Artificial Neural Networks (ANNs), K-Nearest Neighbor (KNN), Support Vector Machines (SVM), along with state-of-the-art Optimizers, namely the Adam, the Broyden–Fletcher–Goldfarb–Shanno (BFGS), Genetic algorithm (GAs), and Particle Swarm Optimization algorithm (PSO). The results were promising, while Integer-bounded Neural Network proved to be the best competitor, opening new inquiries for future work towards automated classification supporting clinicians’ decisions on neurodevelopmental disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.