This review describes the sources, fate, and transport of perfluorocarboxylates (PFCAs) in the environment, with a specific focus on perfluorooctanoate (PFO). The global historical industry-wide emissions of total PFCAs from direct (manufacture, use, consumer products) and indirect (PFCA impurities and/or precursors) sources were estimated to be 3200-7300 tonnes. It was estimated that the majority (approximately 80%) of PFCAs have been released to the environment from fluoropolymer manufacture and use. Although indirect sources were estimated to be much less importantthan direct sources, there were larger uncertainties associated with the calculations for indirect sources. The physical-chemical properties of PFO (negligible vapor pressure, high solubility in water, and moderate sorption to solids) suggested that PFO would accumulate in surface waters. Estimated mass inventories of PFO in various environmental compartments confirmed that surface waters, especially oceans, contain the majority of PFO. The only environmental sinks for PFO were identified to be sediment burial and transport to the deep oceans, implying a long environmental residence time. Transport pathways for PFCAs in the environment were reviewed, and it was concluded that, in addition to atmospheric transport/degradation of precursors, atmospheric and ocean water transport of the PFCAs themselves could significantly contribute to their long-range transport. It was estimated that 2-12 tonnes/ year of PFO are transported to the Artic by oceanic transport, which is greater than the amount estimated to result from atmospheric transport/degradation of precursors.
The long-term (1950-2050) global fate of perfluorooctanoate (PFO) is investigated using the global distribution model, GloboPOP. The model is used to test the hypotheses that direct PFO emissions can account for levels observed in the global oceans and that ocean water transport to the Arctic is an important global distribution pathway. The model emission scenarios are derived from historical and projected PFO emissions solely from direct sources. Modeled ocean water concentrations compare favorably to observed PFO concentrations in the world's oceans and thus ocean inventories can be accounted for by direct sources. The model results support the hypothesis that long-range ocean transport of PFO to the Arctic is important and estimate a net PFO influx of approximately 8-23 tons per year flowing into the model's Northern Polar zone in 2005, an amount at least 1 order of magnitude greater than estimated PFO flux to the Arctic from potential indirect sources such as atmospheric transport and degradation of fluorotelomer alcohols. Modeled doubling times of ocean water concentrations in the Arctic between 1975 and 2005 of approximately 7.5-10 years are in good agreement with doubling times of PFO in Arctic biota estimated from monitoring data. The model is further applied to predict future trends in PFO contamination levels using forecasted (2005-2050) direct emissions, including substantial reductions committed to by industry. Modeled ocean water concentrations in zones near to sources decline markedly after 2005, whereas modeled concentrations in the Arctic are predicted to continue to increase until approximately 2030 and show no significant decrease for the remaining 20 years of the model simulation. Since water is the primary exposure medium for Arctic biota, these model results suggest that concentrations in Arctic biota may continue to rise long after direct emissions have been substantially reduced or eliminated.
The supporting information provides additional details describing the basis and computations for the direct and indirect source emissions as well as environmental inventories and sinks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.