Intermittently connected mobile networks are wireless networks where most of the time there does not exist a complete path from the source to the destination. There are many real networks that follow this model, for example, wildlife tracking sensor networks, military networks, vehicular ad hoc networks (VANETs), etc. To deal with such networks researchers have suggested to use controlled replication or "spraying" methods that can reduce the overhead of flooding-based schemes by distributing a small number of copies to only a few relays. These relays then "look" for the destination in parallel as they move into the network. Although such schemes can perform well in scenarios with high mobility (e.g. VANETs), they struggle in situations were mobility is slow and correlated in space and/or time.To route messages efficiently in such networks, we propose a scheme that also distributes a small number of copies to few relays. However, each relay can then forward its copy further using a single-copy utility-based scheme, instead of naively waiting to deliver it to the destination itself. This scheme exploits all the advantages of controlled replication, but is also able to identify appropriate forwarding opportunities that could deliver the message faster. Simulation results for traditional mobility models, as well as for a more realistic "community-based" model, indicate that our scheme can reduce the delay of existing spraying techniques up to 20 times in some scenarios.
Intermittently connected mobile networks are wireless networks where most of the time there does not exist a complete path from source to destination, or such a path is highly unstable and may break soon after it has been discovered. In this context, conventional routing schemes would fail.To deal with such networks we propose the use of an opportunistic hop-by-hop routing model. According to the model, a series of independent, local forwarding decisions are made, based on current connectivity and predictions of future connectivity information diffused through nodes' mobility. The important issue here is how to choose an appropriate next hop. To this end, we propose and analyze via theory and simulations a number of routing algorithms. The champion algorithm turns out to be one that combines the simplicity of a simple random policy, which is efficient in finding good leads towards the destination, with the sophistication of utility-based policies that efficiently follow good leads. We also state and analyze the performance of an oracle-based optimal algorithm, and compare it to the online approaches. The metrics used in the comparison are the average message delivery delay and the number of transmissions per message delivered.
Large-scale distributed Multiuser MIMO (MU-MIMO) is a promising wireless network architecture that combines the advantages of "massive MIMO" and "small cells." It consists of several Access Points (APs) connected to a central server via a wired backhaul network and acting as a large distributed antenna system. We focus on the downlink, which is both more demanding in terms of traffic and more challenging in terms of implementation than the uplink. In order to enable multiuser joint precoding of the downlink signals, channel state information at the transmitter side is required. We consider Time Division Duplex (TDD), where the downlink channels can be learned from the user uplink pilot signals, thanks to channel reciprocity. Furthermore, coherent multiuser joint precoding is possible only if the APs maintain a sufficiently accurate relative timing and phase synchronization.AP synchronization and TDD reciprocity calibration are two key problems to be solved in order to enable distributed MU-MIMO downlink. In this paper, we propose novel over-the-air synchronization and calibration protocols that scale well with the network size. The proposed schemes can be applied to networks formed by a large number of APs, each of which is driven by an inexpensive 802.11grade clock and has a standard RF front-end, not explicitly designed to be reciprocal. Our protocols can incorporate, as a building block, any suitable timing and frequency estimator. Here we revisit the problem of joint ML timing and frequency estimation and use the corresponding Cramer-Rao bound to evaluate the performance of the synchronization protocol. Overall, the proposed synchronization and calibration schemes are shown to achieve sufficient accuracy for satisfactory distributed MU-MIMO performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.