Cytotoxin-associated gene A (CagA) diversity with regard to EPIYA-A, -B, -C, or -D phosphorylation motifs may play an important role in Helicobacter pylori pathogenesis, and therefore determination of these motifs in H. pylori clinical isolates can become a useful prognostic tool. We propose a strategy for the accurate determination of CagA EPIYA motifs in clinical strains, based upon one-step PCR amplification using primers that flank the EPIYA coding region. We thus analyzed 135 H. pylori isolates derived from 75 adults and 60 children Greek patients. A total of 34 cases were found to be EPIYA PCR negative and were consequently verified as cagA negative by cagA-specific PCR, empty-site cagA PCR, and Western blotting. Sequencing of the remaining 101 PCR-positive amplicons confirmed that an accurate prediction of the number of EPIYA motifs on the basis of size distribution of the PCR products was feasible in all cases. Furthermore, our assay could identify closely related H. pylori subclones within the same patient, harboring different numbers of EPIYA repeats. The prevalence of CagA proteins with three EPIYA motifs (ABC) or four EPIYA motifs (ABCC) was the same within the adult and children groups. However, CagA species with more than four EPIYA motifs were observed exclusively within adults (8.6%), suggesting that CagA-positive strains may acquire additional EPIYA-C motifs throughout adulthood. Our strategy requires no initial cagA screening of the clinical isolates and can accurately predict the number of EPIYA repeats in single or multiple closely related subclones bearing different numbers of EPIYA motifs in their CagA, which may coexist within the same patient.
SUMMARY The BabA adhesin mediates high-affinity binding of Helicobacter pylori to the ABO blood-group antigen-glycosylated gastric mucosa. Here we show that BabA is acid responsive but binding is restored by pH neutralization. Acid responsiveness differs among strains; often correlates with different intragastric regions; changes during chronic infection and disease progression; and depends on pH sensor sequences in BabA and on pH reversible formation of high-affinity binding BabA multimers. We propose that BabA’s extraordinary reversible acid-responsiveness enables tight mucosal bacterial adherence while at the same time allowing an effective escape from epithelial cells and mucus that are shed into the acidic bactericidal lumen and that bio-selection and changes in BabA binding properties through mutations and recombination with babA-related genes are selected by differences among individuals and by changes in gastric acidity over time. These processes generate diverse H. pylori subpopulations, and BabA’s adaptive evolution contributes importantly to H. pylori persistence and to overt gastric disease.
Cartilage oligomeric matrix protein (COMP) was recently implicated in the progression of breast cancer. Immunostaining of 342 prostate cancer specimens in tissue microarrays showed that COMP expression is not breast cancer-specific but also occurs in prostate cancer. The expression of COMP in prostate cancer cells correlated with a more aggressive disease with faster recurrence. Subcutaneous xenografts in immunodeficient mice showed that the prostate cancer cell line DU145 overexpressing COMP formed larger tumors in vivo as compared to mock-transfected cells. Purified COMP bound to and enhanced the invasion of DU145 cells in vitro in an integrin-dependent manner. In addition, intracellular COMP expression interfered with cellular metabolism by causing a decreased level of oxidative phosphorylation with a concurrent upregulation of lactate production (Warburg effect). Further, expression of COMP protected cells from induction of apoptosis via several pathways. The effect of COMP on metabolism and apoptosis induction was dependent on the ability of COMP to disrupt intracellular Ca2+ signalling by preventing Ca2+ release from the endoplasmic reticulum. In conclusion, COMP is a potent driver of the progression of prostate cancer, acting in an anti-apoptotic fashion by interfering with the Ca2+ homeostasis of cancer cells.
The presence of various numbers of EPIYA tyrosine phosphorylation motifs in the CagA protein of Helicobacter pylori has been suggested to contribute to pathogenesis in adults. In this prospective study, we characterized H. pylori isolates from symptomatic children, with reference to the diversity of functional EPIYA motifs in the CagA protein and vacA isotypes, and assessed the potential correlation with the histopathological manifestations of the infection. We analyzed 105 H. pylori isolates from 98 children and determined the diversity of EPIYA motifs in CagA by amplification and sequencing of the 3 variable region of the cagA gene as well as vacA isotypes for the signal, middle, and intermediate regions. CagA phosphorylation and levels of secreted IL-8 were determined following in vitro infection of AGS gastric epithelial cells. Histopathological evaluation of H. pylori colonization, activity, and severity of the associated gastritis was performed according to the updated Sydney criteria. EPIYA A (GLKN[ST]EPIYAKVNKKK), EPIYA B (Q[V/A]ASPEPIY[A/T]QV AKKVNAKI), and EPIYA C (RS[V/A]SPEPIYATIDDLG) motifs were detected in the ABC (46.6%) and ABCC (17.1%) combinations.No isolates harboring more than two EPIYA C motifs in CagA were found. The presence of isogenic strains with variable numbers of CagA EPIYA C motifs within the same patient was detected in seven cases. Occurrence of increasing numbers of EPIYA C motifs correlated strongly with presence of a high-vacuolation (s1 or s2/i1/m1) phenotype and age. A weak positive correlation was observed between vacuolating vacA genotypes and presence of nodular gastritis. However, CagA-and VacA-dependent pathogenicities were not found to contribute to severity of histopathology manifestations in H. pylori-infected children.
CagA protein contributes to pro-inflammatory responses during H. pylori infection, following its intracellular delivery to gastric epithelial cells. Here, we report for the first time in an isogenic background, on the subtle role of CagA phosphorylation on terminal EPIYA-C motifs in the transcriptional activation and expression of IL-8. We utilized isogenic H. pylori mutants of P12 reference strain, expressing CagA with varying number of EPIYA-C motifs and the corresponding phosphorylation defective EPIFA-C motifs while preserving intact the CM multimerization motifs. These mutants had been previously closely scrutinized in terms of type IV secretion system functionality, CagA translocation and its subsequent phosphorylation. Following infection of gastric epithelial cell lines, transcriptional activation of IL-8 gene and secreted IL-8 levels were found to be strictly dependent upon the functionality of the EPIYA-C phosphorylation motifs, as EPIFA-C phosphorylation-deficient CagA expression failed to induce full IL-8 transcriptional activity. Interestingly, levels of IL-8 gene activation and of secreted IL-8 were the same, irrespective of the number of EPIYA-C terminal repeats. We monitored IkBα phosphorylation and confirmed CagA involvement in NF-kB activation. Furthermore, we observed that presence of EPIYA-C functional phosphorylation motifs contributed to NF-kB activation. NF-kB upstream signaling events, such as early ERK1/2 and AKT activation were confirmed to be independent of EPIYA-C phosphorylation. On the contrary, use of TAK1 specific inhibitor 5Z-7-Oxozeaenol resulted in complete arrest of IL-8 secretion, in a dose-dependent manner, irrespective of CagA status. H. pylori-infected TAK1-/- mouse embryonic fibroblasts (MEFs) failed to induce NF-kB activity, unlike the respective control MEFs. CagA and TAK1 were found to immunoprecipitate together, irrespective of CagA EPIYA-C status, thus confirming earlier reports of TAK1 and CagA protein interaction. Our data suggest that CagA may potentially interfere with TAK1 activity during NF-kB activation for IL-8 induction in early H. pylori infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.