Interstitial fibrosis plays a key role in the development and progression of heart failure. Here, we show that an enzyme that crosslinks collagen—Lysyl oxidase-like 2 (Loxl2)—is essential for interstitial fibrosis and mechanical dysfunction of pathologically stressed hearts. In mice, cardiac stress activates fibroblasts to express and secrete Loxl2 into the interstitium, triggering fibrosis, systolic and diastolic dysfunction of stressed hearts. Antibody-mediated inhibition or genetic disruption of Loxl2 greatly reduces stress-induced cardiac fibrosis and chamber dilatation, improving systolic and diastolic functions. Loxl2 stimulates cardiac fibroblasts through PI3K/AKT to produce TGF-β2, promoting fibroblast-to-myofibroblast transformation; Loxl2 also acts downstream of TGF-β2 to stimulate myofibroblast migration. In diseased human hearts, LOXL2 is upregulated in cardiac interstitium; its levels correlate with collagen crosslinking and cardiac dysfunction. LOXL2 is also elevated in the serum of heart failure (HF) patients, correlating with other HF biomarkers, suggesting a conserved LOXL2-mediated mechanism of human HF.
Aims Myocardial scar detected by cardiovascular magnetic resonance has been associated with sudden cardiac death in dilated cardiomyopathy (DCM). Certain genetic causes of DCM may cause a malignant arrhythmogenic phenotype. The concepts of arrhythmogenic left ventricular (LV) cardiomyopathy (ALVC) and arrhythmogenic DCM are currently ill-defined. We hypothesized that a distinctive imaging phenotype defines ALVC. Methods and results Eighty-nine patients with DCM-associated mutations [desmoplakin (DSP) n = 25, filamin C (FLNC) n = 7, titin n = 30, lamin A/C n = 12, bcl2-associated athanogene 3 n = 3, RNA binding motif protein 20 n = 3, cardiac sodium channel NAv1.5 n = 2, and sarcomeric genes n = 7] were comprehensively phenotyped. Clustering analysis resulted in two groups: ‘DSP/FLNC genotypes’ and ‘non-DSP/FLNC’. There were no significant differences in age, sex, symptoms, baseline electrocardiography, arrhythmia burden, or ventricular volumes between the two groups. Subepicardial LV late gadolinium enhancement with ring-like pattern (at least three contiguous segments in the same short-axis slice) was observed in 78.1% of DSP/FLNC genotypes but was absent in the other DCM genotypes (P < 0.001). Left ventricular ejection fraction (LVEF) and global longitudinal strain were lower in other DCM genotypes (P = 0.053 and P = 0.015, respectively), but LV regional wall motion abnormalities were more common in DSP/FLNC genotypes (P < 0.001). DSP/FLNC patients with non-sustained ventricular tachycardia (NSVT) had more LV scar (P = 0.010), whereas other DCM genotypes patients with NSVT had lower LVEF (P = 0.001) than patients without NSVT. Conclusion DSP/FLNC genotypes cause more regionality in LV impairment. The most defining characteristic is a subepicardial ring-like scar pattern in DSP/FLNC, which should be considered in future diagnostic criteria for ALVC.
Background-Common causative agents in the development of inflammatory cardiomyopathy include cardiotropic viruses such as coxsackievirus B3 (CVB3). Here, we investigated the role of the ubiquitin-like modifier interferon-stimulated gene of 15 kDa (ISG15) in the pathogenesis of viral cardiomyopathy. Methods and Results-In CVB3-infected mice, the absence of protein modification with ISG15 was accompanied by a profound exacerbation of myocarditis and by a significant increase in mortality and heart failure. We found that ISG15 in cardiomyocytes contributed significantly to the suppression of viral replication. In the absence of an intact ISG15 system, virus titers were markedly elevated by postinfection day 8, and viral RNA persisted in ISG15 −/− mice at postinfection day 28. Ablation of the ISG15 protein modification system in CVB3 infection predisposed mice to long-term disease with deposition of collagen fibers, all leading to inflammatory cardiomyopathy. We found that ISG15 acts as part of the intrinsic immunity in cardiomyocytes and detected no significant effects of ISG15 modification on the cellular immune response. ISG15 modification of CVB3 2A protease counterbalanced CVB3-induced cleavage of the host cell eukaryotic initiation factor of translation eIF4G in cardiomyocytes, thereby counterbalancing the shutoff of host cell translation in CVB3 infection. We demonstrate that ISG15 suppressed infectious virus yield in human cardiac myocytes and the induction of ISG15 in patients with viral cardiomyopathy. Conclusions-The ISG15 conjugation system represents a critical innate response mechanism in cardiomyocytes to fight the battle against invading pathogens, limiting inflammatory cardiomyopathy, heart failure, and death. Interference with the ISG15 system might be a novel therapeutic approach in viral cardiomyopathy. response. Type I IFNs contribute to the suppression of viral titers and thereby ameliorate invasion of immune cells into the heart, contributing to improved survival in CVB3 infection. [6][7][8] Type I IFN-dependent processes resulted in improved cardiac function during viral cardiomyopathy 7,9 and ensured long-term survival in CVB3-positive dilated cardiomyopathy patients. 10Binding of type I IFNs to their cognate receptors results in the induction of IFN-stimulated gene of 15 kDa (ISG15), a small ubiquitin family protein consisting of 2 ubiquitinlike folds.11 ISG15 is involved in the struggle against pathogens.12-16 ISG15 modification, the process by which ISG15 is covalently attached to lysine residues of target proteins, is mediated through the sequential action of a type I IFN-induced E1-E2-E3 enzymatic cascade, 17 involving the E1-activating enzyme Ube1L, 18 E2-conjugating enzyme Ube2L6, 19 and E3 ligases Herc5 and Herc6 20 in humans and mice, respectively. The isopeptidase USP18 specifically removes ISG15 from ISG15-modified substrates. 21Pursuing the aim to define host determinants that influence the pathogenesis of viral cardiomyopathy, we provide the first evidence for the impact of the ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.