We present optimal deterministic algorithms for constructing shallow cuttings in an arrangement of lines in two dimensions or planes in three dimensions. Our results improve the deterministic polynomial-time algorithm of Matoušek (1992) and the optimal but randomized algorithm of Ramos (1999). This leads to efficient derandomization of previous algorithms for numerous wellstudied problems in computational geometry, including halfspace range reporting in 2-d and 3-d, k nearest neighbors search in 2-d, (≤ k)-levels in 3-d, order-k Voronoi diagrams in 2-d, linear programming with k violations in 2-d, dynamic convex hulls in 3-d, dynamic nearest neighbor search in 2-d, convex layers (onion peeling) in 3-d, ε-nets for halfspace ranges in 3-d, and more. As a side product we also describe an optimal deterministic algorithm for constructing standard (non-shallow) cuttings in two dimensions, which is arguably simpler than the known optimal algorithms by Matoušek (1991) andChazelle (1993).
Abstract. We consider the dynamic two-dimensional maxima query problem. Let P be a set of n points in the plane. A point is maximal if it is not dominated by any other point in P . We describe two data structures that support the reporting of the t maximal points that dominate a given query point, and allow for insertions and deletions of points in P .In the pointer machine model we present a linear space data structure with O(log n + t) worst case query time and O(log n) worst case update time. This is the first dynamic data structure for the planar maxima dominance query problem that achieves these bounds in the worst case. The data structure also supports the more general query of reporting the maximal points among the points that lie in a given 3-sided orthogonal range unbounded from above in the same complexity. We can support 4-sided queries in O(log 2 n + t) worst case time, and O(log 2 n) worst case update time, using O(n log n) space, where t is the size of the output. This improves the worst case deletion time of the dynamic rectangular visibility query problem from O(log 3 n) to O(log 2 n). We adapt the data structure to the RAM model with word size w, where the coordinates of the points are integers in the range U ={0, . . . , 2 w −1}. We present a linear space data structure that supports 3-sided range maxima queries in O( log n log log n +t) worst case time and updates in O( log n log log n ) worst case time. These are the first sublogarithmic worst case bounds for all operations in the RAM model.
Abstract. We revisit a classical problem in computational geometry that has been studied since the 1980s: in the rectangle enclosure problem we want to report all k enclosing pairs of n input rectangles in 2D. We present the first deterministic algorithm that takes O(n log n + k) worst-case time and O(n) space in the word-RAM model. This improves previous deterministic algorithms with O((n log n + k) log log n) running time. We achieve the result by derandomizing the algorithm of Chan, Larsen and Pȃtraşcu [SoCG'11] that attains the same time complexity but in expectation. The 2D rectangle enclosure problem is related to the offline dominance range reporting problem in 4D, and our result leads to the currently fastest deterministic algorithm for offline dominance reporting in any constant dimension d ≥ 4. A key tool behind Chan et al.'s previous randomized algorithm is shallow cuttings for 3D dominance ranges. Recently, Afshani and Tsakalidis [SODA'14] obtained a deterministic O(n log n)-time algorithm to construct such cuttings. We first present an improved deterministic construction algorithm that runs in O(n log log n) time in the word-RAM; this result is of independent interest. Many additional ideas are then incorporated, including a linear-time algorithm for merging shallow cuttings and an algorithm for an offline tree point location problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.