Advances in sequencing technologies over the past 15 years have led to a substantially greater appreciation of the importance of the gut microbiome to the health of the host. Recent outcomes indicate that aspects of nutrition, especially lipids (exogenous or endogenous), can influence the gut microbiota composition and consequently, play an important role in the metabolic health of the host. Thus, there is an increasing interest in applying holistic analytical approaches, such as lipidomics, metabolomics, (meta)transcriptomics, (meta)genomics, and (meta)proteomics, to thoroughly study the gut microbiota and any possible interplay with nutritional or endogenous components. This review firstly summarizes the general background regarding the interactions between important non-polar dietary (i.e., sterols, fat-soluble vitamins, and carotenoids) or amphoteric endogenous (i.e., eicosanoids, endocannabinoids-eCBs, and specialized pro-resolving mediators-SPMs) lipids and gut microbiota. In the second stage, through the evaluation of a vast number of dietary clinical interventions, a comprehensive effort is made to highlight the role of the above lipid categories on gut microbiota and vice versa. In addition, the present status of lipidomics in current clinical interventions as well as their strengths and limitations are also presented. Indisputably, dietary lipids and most phytochemicals, such as sterols and carotenoids, can play an important role on the development of medical foods or nutraceuticals, as they exert prebiotic-like effects. On the other hand, endogenous lipids can be considered either prognostic indicators of symbiosis or dysbiosis or even play a role as specialized mediators through dietary interventions, which seem to be regulated by gut microbiota.
In recent years, mushrooms have drawn the attention of agro-industries and food-industries as they were considered to be valuable natural sources of health promoting compounds such as β-glucans, ergothioneine, and lovastatin. The detection and quantification of such compounds by implementing reliable analytical approaches is of the utmost importance in order to adjust mushrooms’ cultivation conditions and maximize the production in different species. Toward this direction, the current study focuses on the comparison of ultraviolet–visible (UV–Vis) spectrometry and liquid chromatography–mass spectrometry (LC–MS) methods (a) by evaluating the content of ergothioneine and lovastatin in mushrooms and (b) by highlighting any possible substrate-based interferences that hinder the accurate determination of these two compounds in order to propose the technique-of-choice for a standardized bioactive compounds monitoring. For this purpose, mushrooms produced by three species (i.e., Agaricus bisporus, Pleurotus ostreatus, and P. citrinopileatus) on various cultivation substrates, namely wheat straw (WS), winery (grape marc (GM)), and olive oil (OL) by-products, were examined. Among the two applied techniques, the developed and validated LC–MS methods, exhibiting relatively short analysis time and higher resolution, emerge as the methods-of-choice for detecting ergothioneine and lovastatin in mushrooms. On the contrary, UV–Vis methods were hindered due to co-absorbance of different constituents, resulting in invalid results. Among the studied mushrooms, P. citrinopileatus contained the highest amount of ergothioneine (822.1 ± 20.6 mg kg−1 dry sample), whereas A. bisporus contained the highest amounts of lovastatin (1.39 ± 0.014 mg kg−1 dry sample). Regarding the effect of different cultivation substrates, mushrooms produced on OL and WS contained the highest amount of ergothioneine, while mushrooms deriving from GM-based substrates contained the highest amount of lovastatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.