To gain a better understanding of the global application of soil erosion prediction models, we comprehensively reviewed relevant peer-reviewed research literature on soil-erosion modelling published between 1994 and 2017. We aimed to identify (i) the processes and models most frequently addressed in the literature, (ii) the regions within which models are primarily applied, (iii) the regions which remain unaddressed and why, and (iv) how frequently studies are conducted to validate/evaluate model outcomes relative to measured data. To perform this task, we combined the collective knowledge of 67 soil-erosion scientists from 25 countries. The resulting database, named ‘Global Applications of Soil Erosion Modelling Tracker (GASEMT)’, includes 3030 individual modelling records from 126 countries, encompassing all continents (except Antarctica). Out of the 8471 articles identified as potentially relevant, we reviewed 1697 appropriate articles and systematically evaluated and transferred 42 relevant attributes into the database. This GASEMT database provides comprehensive insights into the state-of-the-art of soil- erosion models and model applications worldwide. This database intends to support the upcoming country-based United Nations global soil-erosion assessment in addition to helping to inform soil erosion research priorities by building a foundation for future targeted, in-depth analyses. GASEMT is an open-source database available to the entire user-community to develop research, rectify errors, and make future expansions.
Rainfall erosivity concerns the ability of rainfall to cause erosion on the surface of the earth. The difficulty in modeling the distribution, the size, and the terminal velocity of raindrops in relation to the detachment of soil particles led to the use of more tractable rainfall indices. Thus, in the universal soil loss equation (USLE), the coefficient of rainfall erosivity, R, was introduced. This coefficient is based on the product of the rainfall kinetic energy of a storm and its maximum 30-minute intensity. An important problem in the application of USLE and its revisions in various parts of the world concerns the computation of R, which requires pluviograph records with a length of at least 20 years. For this reason, empirical equations have been developed that are based on coarser rainfall data, such as daily, monthly, or yearly, which are available on larger spatial and temporal extents. However, the lack of denser data is dealt more effectively by means of machine learning methods. Computational systems for this purpose were recently developed based on feed-forward neural networks, yielding significantly better results.
Soil erosion is affected by rainfall, among other factors, and it is likely to increase in the future due to climate change impacts, resulting in higher rainfall intensities. This paper evaluates the impact of the missing values ratio on the computation of the rainfall erosivity factor, R, and erosivity density, ED. The paper also investigates the temporal trends and defines regions of Greece with a similar monthly distribution of ED using an unsupervised method. Preprocessed and free from noise and errors rainfall data from 108 stations across Greece were extracted from the Greek National Bank of Hydrological and Meteorological Information. The rainfall data were analyzed and erosive rainfalls were identified, their return period was determined using intensity–duration–frequency curves and R and ED values were computed. The impact of missing data in the computation of annual values of R and ED was investigated using a Monte Carlo simulation. The findings indicated that missing rainfall data resulted in a linear underestimation of R, while ED is more robust. The trends in ED timeseries were evaluated using the Kendall’s Tau test and their autocorrelation and partial autocorrelation were computed for a small subset of stations using criteria based on the quality of data. Furthermore, cluster analysis was applied to a larger subset of stations to define regions of Greece with similar monthly distribution of ED. The findings of this study indicate that: (a) ED should be preferred for the assessment of erosivity in Greece over the direct computation of R, (b) ED timeseries are found to be stationary for the majority of the selected stations, in contrast to reported precipitation trends for the same time period, (c) Greece is divided into three clusters/areas of stations with distinct monthly distributions of ED.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.