It was demonstrated that organolead halide perovskites (OHPs) show a resistive switching behavior with an ultralow electric field of a few kilovolts per centimeter. However, a slow switching time and relatively short endurance remain major obstacles for the realization of the next-generation memory. Here, we report a performance-enhanced OHP resistive switching device. To fabricate topologically and electronically improved OHP thin films, we added hydroiodic acid solution (for an additive) in the precursor solution of the OHP. With drastically improved morphology such as small grain size, low peak-to-valley depth, and precise thickness, the OHP thin films showed an excellent performance as insulating layers in Ag/CHNHPbI/Pt cells, with an endurance of over 10 cycles, a high on/off ratio of 10, and an operation speed of 640 μs and without electroforming. We suggest plausible resistive switching and conduction mechanisms with current-voltage characteristics measured at various temperatures and with different top electrodes and device structures. Beyond the extended endurance, highly flexible resistive switching devices with a minimum bending radius of 5 mm create opportunities for use in flexible and wearable electronic devices.
The development of a water oxidation catalyst has been a demanding challenge for the realization of overall water-splitting systems. Although intensive studies have explored the role of Mn element in water oxidation catalysis, it has been difficult to understand whether the catalytic capability originates mainly from either the Mn arrangement or the Mn valency. In this study, to decouple these two factors and to investigate the role of Mn valency on catalysis, we selected a new pyrophosphate-based Mn compound (Li2MnP2O7), which has not been utilized for water oxidation catalysis to date, as a model system. Due to the monophasic behavior of Li2MnP2O7 with delithiation, the Mn valency of Li(2-x)MnP2O7 (x = 0.3, 0.5, 1) can be controlled with negligible change in the crystal framework (e.g., volume change ~1%). Moreover, inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, ex-situ X-ray absorption near-edge structure, galvanostatic charging-discharging, and cyclic voltammetry analysis indicate that Li(2-x)MnP2O7 (x = 0.3, 0.5, 1) exhibits high catalytic stability without additional delithiation or phase transformation. Notably, we observed that, as the averaged oxidation state of Mn in Li(2-x)MnP2O7 increases from 2 to 3, the catalytic performance is enhanced in the series Li2MnP2O7 < Li(1.7)MnP2O7 < Li(1.5)MnP2O7 < LiMnP2O7. Moreover, Li2MnP2O7 itself exhibits superior catalytic performance compared with MnO or MnO2. Our study provides valuable guidelines for developing an efficient Mn-based catalyst under neutral conditions with controlled Mn valency and atomic arrangement.
Metal−insulator transition (MIT) in strongly correlated electronic materials has enormous potential with scientific and technological impacts in future oxide nanoelectronic devices. Although photo-induced MIT can provide opportunities to extend the novel functionality of strongly correlated electronic materials, there have rarely been reports on it. Here, we report MIT provoked by visible−near-infrared light in Ag-decorated VO 2 nanorod arrays (NRs) because of localized surface plasmon resonance (LSPR) and its application to broadband photodetectors. Our simulation results based on the finite-difference time-domain method show that the electric field resulting from LSPR can be generated at the interface between Ag nanoparticles and VO 2 layers under vis NIR illumination. Using high-resolution transmission electronic microscopy and Raman spectroscopy, we observe the MIT and structural phase transition in the Agdecorated VO 2 NRs due to the LSPR effect. The optoelectronic measurements confirm that high, fast, and broad photoresponse of Ag-decorated VO 2 NRs is attributed to photo-induced MIT due to LSPR. Our study will open up a new strategy to trigger MIT in strongly correlated electronic materials through functionalization with plasmonic nanoparticles and serve as a valuable proof of concept for next-generation optoelectronic devices with fast response, low power consumption, and high performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.