The piezoelectricity of cyanoethylated hydroxyethylcellulose was investigated. Elastic, piezoelectric, and dielectric relaxations were observed at -80 ° to -60°C and 0 ° to 20°C at a frequency of 10Hz. The activation energy is about 9-15kcal/mol in the low temperature region and about 30-45kcal/mol at room temperature. These relaxations in the low temperature region may be caused by the motion of the cyanoethyl group and those at room temperature mostly by the motions of the main chain. Cyanoethylated hydroxyethylcellulose has a high piezoelectric strain constant (d25), which is the largest value among the cellulose derivatives and is almost the same as the value for polyvinylidene fluoride. The electromechanical coupling factor for cyanoethylated hydroxyethylcellulose was small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.