The cell-to-cell movement of Turnip crinkle virus (TCV) in Nicotiana benthamiana requires the presence of its coat protein (CP), a known suppressor of RNA silencing. RNA transcripts of a TCV construct containing a reporter gene (green fluorescent protein) (TCV-sGFP) in place of the CP open reading frame generated foci of three to five cells. TCV CP delivered in trans by Agrobacterium tumefaciens infiltration potentiated movement of TCV-sGFP and increased foci diameter, on average, by a factor of four. Deletion of the TCV movement proteins in TCV-sGFP (construct TCVDelta92-sGFP) abolished the movement complementation ability of TCV CP. Other known suppressors of RNA silencing from a wide spectrum of viruses also complemented the movement of TCV-sGFP when delivered in trans by Agrobacterium tumefaciens. These include suppressors from nonplant viruses with no known plant movement function, demonstrating that this assay is based solely on RNA silencing suppression. While the TCV-sGFP construct is primarily used as an infectious RNA transcript, it was also subcloned for direct expression from Agrobacterium tumefaciens for simple quantification of suppressor activity based on fluorescence levels in whole leaves. Thus, this system provides the flexibility to assay for suppressor activity in either the cytoplasm or nucleus, depending on the construct employed.
Extreme resistance (ER) is a type of R-gene-mediated resistance that rapidly induces a symptomless resistance phenotype, which is different from the phenotypical R-resistance manifested by the programmed cell death, accumulation of reactive oxygen species, and hypersensitive response. The Rsv3 gene in soybean cultivar L29 is responsible for ER against the avirulent strain G5H of soybean mosaic virus (SMV), but is ineffective against the virulent strain G7H. Rsv3-mediated ER is achieved through the rapid accumulation of callose, which arrests SMV-G5H at the point of infection. Callose accumulation, however, may not be the lone mechanism of this ER. Analyses of RNA-seq data obtained from infected soybean plants revealed a rapid induction of the abscisic acid pathway at 8 h post infection (hpi) in response to G5H but not to G7H, which resulted in the down-regulation of transcripts encoding β-1,3 glucanases that degrade callose in G5H-infected but not G7H-infected plants. In addition, parts of the autophagy and the small interfering (si) RNA pathways were temporally up-regulated at 24 hpi in response to G5H but not in response to G7H. The jasmonic acid (JA) pathway and many WRKY factors were clearly up-regulated only in G7H-infected plants. These results suggest that ER against SMV-G5H is achieved through the quick and temporary induction of ABA, autophagy, and the siRNA pathways, which rapidly eliminate G5H. The results also suggest that suppression of the JA pathway in the case of G5H is important for the Rsv3-mediated ER.
The 72nt 3' non-translated region (NTR) of potato virus X (PVX) RNA is identical in all sequenced PVX strains and contains sequences that are conserved among all potexviruses. Computer folding of the 3' NTR sequence predicted three stem-loop structures (SL1, SL2, and SL3 in the 3' to 5' direction), which generally were supported by solution structure analyses. The importance of these sequence and/or structural elements to PVX RNA accumulation was further analyzed by inoculation of Nicotiana tabacum (NT-1) protoplasts with PVX transcripts containing mutations in the 3' NTR. Analyses of RNA accumulation by S(1) nuclease protection indicated that multiple sequence elements throughout the 3' NTR were important for minus-strand RNA accumulation. Formation of SL3 was required for accumulation of minus-strand RNA, whereas SL1 and SL2 formation were less important. However, sequences within all of these predicted structures were required for minus-strand RNA accumulation, including a conserved hexanucleotide sequence element in the loop of SL3, and the CU nucleotide in a U-rich sequence within SL2. In contrast, 13 nucleotides that were predicted to reside in SL1 could be deleted without any significant reduction in minus or plus-strand RNA levels. Potential polyadenylation signals (near upstream elements; NUEs) in the 3' NTR of PVX RNA were more important for plus-strand RNA accumulation than for minus-strand RNA accumulation. In addition, one of these NUEs overlapped with other sequence required for optimal minus-strand RNA levels. These data indicate that the PVX 3' NTR contains multiple, overlapping elements that influence accumulation of both minus and plus-strand RNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.