BackgroundCaesalpinia sappan L. extracts exhibit great therapeutic potential, and have been shown to have analgesic and anti-inflammatory properties. This study aimed to understand the anti-rheumatoid activity of brazilin that was isolated from ethyl acetate extract of C. sappan L. The evaluations were conducted in mice with type-II collagen-induced arthritis (CIA).MethodsBrazilin was purified via preparative HPLC and identified by mass spectrometry and 1H/13C NMR analysis. DBA/1J mice were divided into four groups (n = 10). Three groups of mice received intradermal injections of inducer bovine type-II collagen (BTIIC; 2 mg/ml in 0.05 ml acetic acid) and 0.1 ml of booster complete Freund’s adjuvant (CFA). A second injection of BTIIC with booster incomplete Freund’s adjuvant (ICFA) was given subsequently after 21 days. On 22nd day, purified brazilin (10 mg/kg body weight) or the disease-modifying anti-rheumatic drug methotrexate (3 mg/kg body weight) was administered intraperitoneally daily or every three days for 21 days, respectively to two groups of mice. At the 42nd day, mice sera were collected, and the levels of pro-inflammatory cytokines and stress enzyme markers in serum were measured using standard immunoassay methods. The microstructure and morphometric analyses of the bones were assessed using high-resolution microfocal computed tomography.ResultsBrazilin isolated from C. sappan reduced the arthritis index score and the extent of acute inflammatory paw edema in CIA-mice. The bone mineral density was significantly (p < 0.05) lower in only-CIA mice, and appeared to increase commensurate with methotrexate and brazilin administration. Brazilin prevented joint destruction, surface erosion, and enhanced bone formation as revealed by microstructural examinations. Brazilin markedly attenuated mouse CIA and reduced the serum levels of inflammatory cytokines including TNF-α, IL-1β, and IL-6.ConclusionsBrazilin purified from C. sappan L. shows protective efficacy in CIA mouse, and may be useful to treat chronic inflammatory disorders including rheumatoid arthritis.
Sappanchalcone, a bioactive flavonoid isolated from the heartwood of Caesalpinia sappan L. possesses anti-inflammatory effects. We studied the efficacy of sappanchalcone in attenuating collagen-induced arthritis (CIA) in a mouse model of rheumatoid arthritis. Sappanchalcone was purified to homogeneity from the chloroform fraction of the methanolic extract of C. sappan, and identified using mass spectrometry and (1)H-nuclear magnetic resonance spectroscopy. CIA-induced male DBA/1J mice were divided into control, sappanchalcone-treated, and methotrexate-treated groups (n = 10 per group). Paw swelling, arthritis severity, radiographic and histomorphometric changes were assessed to measure the protective role of sappanchalcone against chronic disease progression. Sappanchalcone administration significantly reduced clinical arthritis and inflammatory edema in paws. Bone mineral density and trabecular structure were maintained in CIA mice administered sappanchalcone. The levels of pro-inflammatory cytokines (TNF-α, IL-6, and 1L-1β) were significantly lower in the serum of sappanchalcone-treated mice as compared with the control group. Our results suggest that sappanchalcone could be used as an anti-inflammatory and bone-protective agent during the treatment of rheumatoid arthritis.
Chitinases catalyze the conversion of chitin and are produced by a wide range of bacteria. The biological applications of these enzymes have been exploited in food and pharmaceutical industries. We isolated 2 halophilic chitinase-producing novel strains of bacteria-SCH-1 and SCH-2 from Saeu-jeot, a traditional Korean salted and fermented food made with shrimp (Acetes japonicus). The isolated strains- SCH-1 and SCH-2 were Gram-positive, rod-shaped, endospore-forming facultative anaerobes, with strain SCH-2 showing peritrichous flagella. Molecular characterization of the 16S rRNA gene identified the strains SCH-1 and SCH-2 as Bacillus sp. and Paenibacillus sp. respectively. Basic Local Alignment Search Tool and subsequent phylogenetic analysis of strain SCH-1 showed an identity of 97.83% with Bacillus cereus ATCC 14579 (NR_074540), whereas strain SCH-2 showed an identity of 99.16% with Paenibacillus lautus JCM 9073 (NR_040882). Furthermore, the SCH-1 strain could use glucose, N-acetyl glucosamine, esculin, and maltose as carbon source substrates. Cellular fatty acid analysis showed that iso-C15:0 and anteiso-C15:0 are the major acids in strain SCH-1 and SCH-2, respectively. The SCH-1 strain showed a higher chitinase activity at 15.71 unit/mg protein compared with SCH-2 strain. Chitinase isozymes of Bacillus sp. SCH-1was expressed as 2 bands having sizes of 41 and 50 kDa, and as 4 bands with sizes of 30, 37, 45.7, and 50 kDa in Paenibacillus sp. SCH-2. The rich chitinase activity with the isozyme profiles of the isolated Bacillus and Paenibacillus strains provide advancement in the study of fermentation and may play putative functions in the chitin bioconversion of sea crustacean foods.
The aim of this study was to determine, using murine RAW 264.7 macrophages, the immunomodulatory effect of extracellular β-glucan isolated from Pleurotus eryngii (PEBG) and its sulfated derivative (PEBG-S) on signaling molecules implicated in host innate immunity. β-Glucan was extracted and purified from the mycelial culture using optimal medium concentrations. It was then chemically converted to its sulfated form. Monosaccharide composition of β-glucan was characterized with p-aminobenzoic acid ethyl ester-derivatized sugars through highperformance liquid chromatography analysis. Fourier transform infrared structural analysis showed an S=O bond at 1250 cm-1 and C-S-O binding at 815 cm-1 in PEBG-S. 13C nuclear magnetic resonance analysis showed 1,3-linked α-D-mannopyranosyl and 1,3-β-D-glucopyranosyl in PEBG-S. A concentration-dependent increase of nitric oxide production was noticed in RAW 264.7 cells treated with PEBG-S or PEBG; those treated with PEBG-S showed less cytotoxicity than those treated with PEBG. Cellular levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 were increased by PEBG and PEBG-S treatment, suggesting that they have immunomodulatory activity. Real-time polymerase chain reaction array revealed that the expression levels of nuclear factor-κB and Toll-like receptor signaling genes in cells were upregulated by PEBG and PEBG-S. Moreover, the expression of the β-glucan receptor dectin-2 was significantly upregulated by PEBG and PEBG-S treatment, reflecting immune activation through the dectin-2-Syk-(CARD9/Bcl-10/MALT1) pathway. Our results suggest that PEBG-S could be used as an effective adjuvant or immune enhancer that can be sustainably produced by recycling the by-product of mycelial culture.
The Korean traditional seafood jeotgal is consumed directly or as an additive in other foods to improve flavor or fermentation efficiency. Saeujot, made from salted and fermented tiny shrimp (SFS; Acetes japonicus), is the best-selling jeotgal in Korea. In this study, we reveal the microbial diversity and dynamics in naturally fermented shrimp by denaturing gradient gel electrophoresis (DGGE). The population fingerprints of the predominant microbiota and its succession were generated by DGGE analysis of universal V3 16S rDNA polymerase chain reaction (PCR) amplicons. Overall, 17 strains were identified from sequencing of 30 DGGE bands. The DGGE profiles showed diverse bacterial populations in the sample, throughout the fermentation of SFS. Staphylococcus equorum, Halanaerobium saccharolyticum, Salimicrobium luteum, and Halomonas jeotgali were the dominant bacteria, and their levels steadily increased during the fermentation process. Certain other bacteria, such as Psychrobacter jeotgali and Halomonas alimentaria appeared during the early-fermentation process, while Alkalibacterium putridalgicola, Tetragenococcus muriaticus, and Salinicoccus jeotgali appeared during the late-fermentation process. The members of the order Bacillales were found to be predominant during the fermentation of SFS. Furthermore, S. equorum was identified as the dominant bacterial isolate by the traditional method of culturing under aerobic and facultative anaerobic conditions. We expect that this information will facilitate the design of autochthonous starter cultures for the production of SFS with desired characteristic sensory profiles and shorter ripening times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.