In this paper, we propose a method of generating a color image from light detection and ranging (LiDAR) 3D reflection intensity. The proposed method is composed of two steps: projection of LiDAR 3D reflection intensity into 2D intensity, and color image generation from the projected intensity by using a fully convolutional network (FCN). The color image should be generated from a very sparse projected intensity image. For this reason, the FCN is designed to have an asymmetric network structure, i.e., the layer depth of the decoder in the FCN is deeper than that of the encoder. The well-known KITTI dataset for various scenarios is used for the proposed FCN training and performance evaluation. Performance of the asymmetric network structures are empirically analyzed for various depth combinations for the encoder and decoder. Through simulations, it is shown that the proposed method generates fairly good visual quality of images while maintaining almost the same color as the ground truth image. Moreover, the proposed FCN has much higher performance than conventional interpolation methods and generative adversarial network based Pix2Pix. One interesting result is that the proposed FCN produces shadow-free and daylight color images. This result is caused by the fact that the LiDAR sensor data is produced by the light reflection and is, therefore, not affected by sunlight and shadow.
In this paper, a modified encoder-decoder structured fully convolutional network (ED-FCN) is proposed to generate the camera-like color image from the light detection and ranging (LiDAR) reflection image. Previously, we showed the possibility to generate a color image from a heterogeneous source using the asymmetric ED-FCN. In addition, modified ED-FCNs, i.e., UNET and selected connection UNET (SC-UNET), have been successfully applied to the biomedical image segmentation and concealed-object detection for military purposes, respectively. In this paper, we apply the SC-UNET to generate a color image from a heterogeneous image. Various connections between encoder and decoder are analyzed. The LiDAR reflection image has only 5.28% valid values, i.e., its data are extremely sparse. The severe sparseness of the reflection image limits the generation performance when the UNET is applied directly to this heterogeneous image generation. In this paper, we present a methodology of network connection in SC-UNET that considers the sparseness of each level in the encoder network and the similarity between the same levels of encoder and decoder networks. The simulation results show that the proposed SC-UNET with the connection between encoder and decoder at two lowest levels yields improvements of 3.87 dB and 0.17 in peak signal-to-noise ratio and structural similarity, respectively, over the conventional asymmetric ED-FCN. The methodology presented in this paper would be a powerful tool for generating data from heterogeneous sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.