According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.
This paper presents a new test method for determining the mechanical properties of glass fiber-reinforced polymer (GFRP) composite bars in compression, namely the compressive strength, compressive modulus of elasticity, ultimate crushing strain, and compressive stress-strain curves of the bars. The contribution of GFRP bars in compression is currently neglected by major design guidelines related to GFRP-reinforced concrete columns. However, the demand for using GFRP bars is increasing since multiple researchers have shown the effectiveness of the bars in concrete columns. Thus, the need for characterization of the mechanical properties of GFRP bars is increasing, while there is no standardized test method to evaluate the compressive properties of these bars. Therefore, in this paper, a new test method is proposed for evaluating the compressive characteristics of GFRP bars. The proposed test method was examined through testing a total of 35 specimens. It was observed that the test method was able to evaluate the compressive characteristics of the GFRP bars successfully. Three different modes of compressive failure were observed which were related to the crushing of GFRP bars in different locations in the bar, but no premature failure or bar buckling was observed. Moreover, a comparison between tensile and compression characteristics of the GFRP bars showed that the tensile test results is not sufficient to estimate the compressive characteristics and performing compression test is necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.