We incorporate strong negation in the theory of computable functionals TCF, a common extension of Plotkin's PCF and Gödel's system T, by defining simultaneously the strong negation A N of a formula A and the strong negation P N of a predicate P in TCF. As a special case of the latter, we get the strong negation of an inductive and a coinductive predicate of TCF. We prove appropriate versions of the Ex falso quodlibet and of the double negation elimination for strong negation in TCF, and we study the so-called tight formulas of TCF i.e., formulas implied from the weak negation of their strong negation. We present various case-studies and examples, which reveal the naturality of our definition of strong negation in TCF and justify the use of TCF as a formal system for a large part of Bishop-style constructive mathematics.
We extract verified algorithms for exact real number computation from constructive proofs. To this end we use a coinductive representation of reals as streams of binary signed digits. The main objective of this paper is the formalisation of a constructive proof that real numbers are closed with respect to limits. All the proofs of the main theorem and the first application are implemented in the Minlog proof system and the extracted terms are further translated into Haskell. We compare two approaches. The first approach is a direct proof. In the second approach we make use of the representation of reals by a Cauchy-sequence of rationals. Utilizing translations between the two represenation and using the completeness of the Cauchy-reals, the proof is very short. In both cases we use Minlog's program extraction mechanism to automatically extract a formally verified program that transforms a converging sequence of reals, i.e.~a sequence of streams of binary signed digits together with a modulus of convergence, into the binary signed digit representation of its limit. The correctness of the extracted terms follows directly from the soundness theorem of program extraction. As a first application we use the extracted algorithms together with Heron's method to construct an algorithm that computes square roots with respect to the binary signed digit representation. In a second application we use the convergence theorem to show that the signed digit representation of real numbers is closed under multiplication.
We extract verified algorithms for exact real number computation from constructive proofs. To this end we use a coinductive representation of reals as streams of binary signed digits. The main objective of this paper is the formalisation of a constructive proof that real numbers are closed with respect to limits. All the proofs of the main theorem and the first application are implemented in the Minlog proof system and the extracted terms are further translated into Haskell. We compare two approaches. The first approach is a direct proof. In the second approach we make use of the representation of reals by a Cauchy-sequence of rationals. Utilizing translations between the two represenation and using the completeness of the Cauchy-reals, the proof is very short.In both cases we use Minlog's program extraction mechanism to automatically extract a formally verified program that transforms a converging sequence of reals, i.e. a sequence of streams of binary signed digits together with a modulus of convergence, into the binary signed digit representation of its limit. The correctness of the extracted terms follows directly from the soundness theorem of program extraction.As a first application we use the extracted algorithms together with Heron's method to construct an algorithm that computes square roots with respect to the binary signed digit representation. In a second application we use the convergence theorem to show that the signed digit representation of real numbers is closed under multiplication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.