We investigated before the possibility of modifying alpha decay rate by the influence of a laser radiation upon a nucleus. We showed that the laser radiation with the extreme achievable intensity slightly modifies the total rate of alpha decay. A different result may be probably obtained if it use synchrotron radiation for the irradiation of an alpha-active nucleus. At present, synchrotron radiation from the third generation synchrotrons has high brilliance, the photon energy may reach 200-300 keV and, in the future, it may be larger. These energies are comparable with nuclear ones and the effect from the influence of the synchrotron radiation upon alpha decay could be more significant. As it turned out, the change of the alpha decay rate of 238 U isotope into the synchrotron radiation field from the third generation synchrotrons will be negligible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.