In the present research work, the effects of thermal and induced magnetic fields on the natural convective rotating fluid flow past the vertical cylinder are presented. The numerical solution of the unsteady field variables is obtained by solving the governing non-dimensional non-linear equations. The effects of the Prandtl, Taylor and Chandrasekhar numbers on the induced magnetic field, average momentum and heat transfer coefficients are presented graphically. The field synergy/ coordination principleis discussed to understand the enhancement of convective heat transfer. Increasing values of synergy co–insides with the increasing rate of heat transfer.
The article deals with the natural convective flow of air in a cubical cavity which is analyzed numerically. Isothermal temperature is maintained on the vertical walls where the temperature of the left wall is more than the right wall and all other walls are assumed to be kept insulated. In this present article, upwind, QUICK, SUPERBEE, and self‐filtered central differencing schemes are compared based on their accuracy and computational time with a numerical example. An attempt has been made to analyze the flow behavior inside the cavity using vortex corelines, streamlines, isotherms energy pathlines, and field synergy by varying the Rayleigh number (Ra) from 103 to 106. In the vicinity of isothermal vertical walls, the velocity, and temperature boundary layers become thinner as Ra increases. The energy pathlines are in oscillating nature when Ra increases to 105 and above. The field synergy principle implies by improving the synergy between the velocity and temperature, the heat transfer gets enhanced with the less increased flow resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.