T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a high incidence of relapse in pediatric ALL. Although most T-ALL patients exhibit activating mutations in NOTCH1, the cooperating genetic events required to accelerate the onset of leukemia and worsen disease progression are largely unknown. Here, we show that the gene encoding the transcription factor KLF4 is inactivated by DNA methylation in children with T-ALL. In mice, loss of KLF4 accelerated the development of NOTCH1-induced T-ALL by enhancing the G1-to-S transition in leukemic cells and promoting the expansion of leukemia-initiating cells. Mechanistically, KLF4 represses the gene encoding the kinase MAP2K7. Our results showed that in murine and pediatric T-ALL, loss of KLF4 leads to aberrant activation of MAP2K7 and of the downstream effectors JNK and ATF2. As a proof-of-concept for the development of a targeted therapy, administration of JNK inhibitors reduced the expansion of leukemia cells in cell-based and patient-derived xenograft models. Collectively, these data uncover a novel function for KLF4 in regulating the MAP2K7 pathway in T-ALL cells, which can be targeted to eradicate leukemia-initiating cells in T-ALL patients.
Acute lymphoblastic leukemia (ALL) is the most common hematological cancer in children. Although risk-adaptive therapy, CNS-directed chemotherapy, and supportive care have improved the survival of ALL patients, disease relapse is still the leading cause of cancer-related death in children. Therefore, new drugs are needed as frontline treatments in high-risk disease and as salvage agents in relapsed ALL. In this study, we report that purified sulforaphane, a natural isothiocyanate found in cruciferous vegetables, has anti-leukemic properties in a broad range of ALL cell lines and primary lymphoblasts from pediatric T-ALL and pre-B ALL patients. The treatment of ALL leukemic cells with sulforaphane resulted in dose-dependent apoptosis and G2/M cell cycle arrest, which was associated with the activation of caspases (3, 8, and 9), inactivation of PARP, p53-independent upregulation of p21CIP1/WAF1, and inhibition of the Cdc2/Cyclin B1 complex. Interestingly, sulforaphane also inhibited the AKT and mTOR survival pathways in most of the tested cell lines by lowering the levels of both total and phosphorylated proteins. Finally, the administration of sulforaphane to the ALL xenograft models resulted in a reduction of tumor burden, particularly following oral administration, suggesting a potential role as an adjunctive agent to improve the therapeutic response in high-risk ALL patients with activated AKT signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.