Metastatic or recurrent tumors are the primary cause of cancer-related death. For prostate cancer, patients diagnosed with local disease have a 99% 5-year survival rate; however, this 5-year survival rate drops to 28% in patients with metastatic disease. This dramatic decline in survival has driven interest in discovering new markers able to identify tumors likely to recur and in developing new methods to prevent metastases from occurring. Biomarker discovery for aggressive tumor cells includes attempts to identify cancer stem cells (CSCs). CSCs are defined as tumor cells capable of self-renewal and regenerating the entire tumor heterogeneity. Thus, it is hypothesized that CSCs may drive primary tumor aggressiveness, metastatic colonization, and therapeutic relapse. The ability to identify these cells in the primary tumor or circulation would provide prognostic information capable of driving prostate cancer treatment decisions. Further, the ability to target these CSCs could prevent tumor metastasis and relapse after therapy allowing for prostate cancer to finally be cured. Here, we will review potential CSC markers and highlight evidence that describes how cells expressing each marker may drive prostate cancer progression, metastatic colonization and growth, tumor recurrence, and resistance to treatment.
Cancer stem-like cells (CSCs) are associated with cancer progression, metastasis, and recurrence, and may also represent a subset of circulating tumor cells (CTCs). In our prior study, CTCs in advanced prostate cancer patients were found to express CD117/c-kit in a liquid biopsy. Whether CD117 expression played an active or passive role in the aggressiveness and migration of these CTCs remained an open question. In this study, we show that CD117 expression in prostate cancer patients is associated with decreased overall and progression-free survival and that activation and phosphorylation of CD117 increases in prostate cancer patients with higher Gleason grades. To determine how CD117 expression and activation by its ligand stem cell factor (SCF, kit ligand, steel factor) alter prostate cancer aggressiveness, we used C4-2 and PC3-mm human prostate cancer cells, which contain a CD117+ subpopulation. We demonstrate that CD117+ cells display increased proliferation and migration. In prostaspheres, CD117 expression enhances sphere formation. In both 2D and 3D cultures, stemness marker gene expression is higher in CD117+ cells. Using xenograft limiting dilution assays and serial tumor initiation assays, we show that CD117+ cells represent a CSC population. Combined, these data indicate that CD117 expression potentially promotes tumor initiation and metastasis. Further, in cell lines, CD117 activation by SCF promotes faster proliferation and invasiveness, while blocking CD117 activation with tyrosine kinase inhibitors (TKIs) decreased progression in a context-dependent manner. We demonstrate that CD117 expression and activation drives prostate cancer aggressiveness through the CSC phenotype and TKI resistance.
The development of distant metastasis is the main cause of prostate cancer (CaP)related death with the skeleton being the primary site of metastasis. While the progression of primary tumors and the growth of bone metastatic tumors are well described, the mechanisms controlling pre-metastatic niche formation and homing of CaP to bone remain unclear. Through prior studies, we demonstrated that platelet secretion was required for ongoing tumor growth and pre-metastatic tumor-induce bone formation and bone marrow-derived cell mobilization to cancers supporting angiogenesis. We hypothesized that proteins released by the platelet α granules were responsible for inducing changes in the pre-metastatic bone niche. We found that the classically antiangiogenic protein thrombospondin (TSP)-1 was significantly increased in the platelets of mice bearing tumors. To determine the role of increased TSP-1, we implanted tumors in TSP-1 null animals and assessed changes in tumor growth and pre-metastatic niche formation. TSP-1 loss resulted in increased tumor size and enhanced angiogenesis but reduced bone marrow-derived cell mobilization and tumor-induced bone formation with enhanced osteoclast formation. We hypothesized that these changes in the pre-metastatic niche were due to the retention of TGF-β1 in the platelets of mice with TSP-1 deleted. To assess the importance of platelet-derived TGF-β1, we implanted CaP tumors in mice with platelet-specific deletion of TGF-β1. Similar to TSP-1 deletion, loss of platelet TGF-β1 resulted in increased angiogenesis with a milder effect on tumor size and BMDC release.Within the bone microenvironment, platelet TGF-β1 deletion prevented tumor-induced bone formation due to increased osteoclastogenesis. Thus, we demonstrate that the TSP-1/TGF-β1 axis regulates pre-metastatic niche formation and tumor-induced bone Kerr 3 turnover. Targeting the platelet release of TSP-1 or TGF-β1 represents a potential method to interfere with the process of CaP metastasis to bone. Abbreviations: CaP: prostate cancer; MMP: matrix metalloproteinase; RANKL: receptor activator of NF-κB ligand; SMA: smooth muscle actin; TGF-β1: transforming growth factor beta-1 TRAP: tartrate-resistant acid phosphatase; TSP: thrombospondin, VEGF: vascular endothelial growth factor Kerr 4 INTRODUCTION An estimated 191,930 men will be diagnosed with prostate cancer (CaP) in 2020, surpassing even lung cancer in incidence [1]. Early detection has improved survival rates to 100 percent with a local diagnosis. However, men diagnosed with distant CaP metastases face a 30 percent chance of survival at five years, with bone being the most common site of CaP metastasis [1]. In fact, 90% of CaP patients display skeletal metastases at autopsy regardless of prior bone symptom reporting. Bone metastases are responsible for severe bone pain, decreased mobility, fractures, spinal cord compression, and hypercalcemia resulting in patient morbidity. Metastatic skeletal CaP lesions can produce many growth factors and cytokines which alter the bone struc...
Cancer stem-like cells (CSCs) are associated with cancer progression, metastasis, and recurrence, and may also represent a subset of circulating tumor cells (CTCs). In our prior study, CTCs in advanced prostate cancer patients were found to express CD117/ckit in a liquid biopsy. Whether CD117 expression played an active or passive role in the aggressiveness and migration of these CTCs remained an open question. In this study, we show that CD117 expression in prostate cancer patients is associated with decreased overall and progression-free survival and that activation and phosphorylation of CD117 increases in prostate cancer patients with higher Gleason grades. To determine how CD117 expression and activation by its ligand stem cell factor (SCF, kit ligand, steel factor) alter prostate cancer aggressiveness, we used LNCaP-C4-2 and PC3-mm human prostate cancer cells, which contain a CD117+ subpopulation. We demonstrate that CD117+ cells display increased proliferation and migration. In prostaspheres, CD117 expression enhances sphere formation. In both 2D and 3D cultures, stemness marker gene expression is higher in CD117+ cells. Using xenograft limiting dilution assays and serial tumor initiation assays, we show that CD117+ cells represent a CSC population.Combined, these data indicate that CD117 expression potentially promotes tumor initiation and metastasis. Further, in cell lines, CD117 activation by SCF promotes faster proliferation and invasiveness, while blocking CD117 activation with tyrosine kinase inhibitors (TKIs) decreased progression in a context-dependent manner. We demonstrate that CD117 expression and activation drives prostate cancer aggressiveness through the CSC phenotype and TKI resistance.Harris 3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.