The student’s retention rate is one of the challenging issues that representing the quality of the university. A high dropout rate of students affects not only the reputation of the university but also the students’ career in the future. Therefore, there is a need of student dropout analysis in order to improve the academic plan and management to reduce students drop out from the university as well as to enhance the quality of the higher education system. Data mining technique provides powerful methods for analysis and the prediction the dropout. This paper proposes a model for predicting students’ dropout using the dataset from the representative of the largest public university in the Southen part of Thailand. In this study, data from Faculty of Science, Prince of Songkla University was collected from academic year of 2013 to 2017. The experiment result shows that JRip rule induction is the best technique to generate a prediction model receiving the highest accuracy value of 77.30%. The results highlight the potential prediction model that can be used to detect the early state of dropping out of the student which the university can provide supporting program to improve the student retention rate
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.