Abstract. We describe e cient formulas for computing pairings on ordinary elliptic curves over prime elds. First, we generalize lazy reduction techniques, previously considered only for arithmetic in quadratic extensions, to the whole pairing computation, including towering and curve arithmetic. Second, we introduce a new compressed squaring formula for cyclotomic subgroups and a new technique to avoid performing an inversion in the nal exponentiation when the curve is parameterized by a negative integer. The techniques are illustrated in the context of pairing computation over Barreto-Naehrig curves, where they have a particularly e cient realization, and also combined with other important developments in the recent literature. The resulting formulas reduce the number of required operations and, consequently, execution time, improving on the state-of-the-art performance of cryptographic pairings by 27%-33% on several popular 64-bit computing platforms. In particular, our techniques allow to compute a pairing under 2 million cycles for the rst time on such architectures.
Abstract. Galbraith, Lin and Scott recently constructed efficiently-computable endomorphisms for a large family of elliptic curves defined over Fq 2 and showed, in the case where q is prime, that the Gallant-Lambert-Vanstone point multiplication method for these curves is significantly faster than point multiplication for general elliptic curves over prime fields. In this paper, we investigate the potential benefits of using Galbraith-Lin-Scott elliptic curves in the case where q is a power of 2. The analysis differs from the q prime case because of several factors, including the availability of the point halving strategy for elliptic curves over binary fields. Our analysis and implementations show that Galbraith-Lin-Scott offers significant acceleration for curves over binary fields, in both doubling-and halving-based approaches. Experimentally, the acceleration surpasses that reported for prime fields (for the platform in common), a somewhat counterintuitive result given the relative costs of point addition and doubling in each case.
Abstract. We propose new squaring formulae for cyclotomic subgroups of certain finite fields. Our formulae use a compressed representation of elements having the property that decompression can be performed at a very low cost. The squaring formulae lead to new exponentiation algorithms in cyclotomic subgroups which outperform the fastest previously-known exponentiation algorithms when the exponent has low Hamming weight. Our algorithms can be adapted to accelerate the final exponentiation step of pairing computations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.