Translation of SecM stalls unless its N-terminal part is "pulled" by the protein export machinery. Here we show that the sequence motif FXXXXWIXXXXGIRAGP that includes a specific arrest point (Pro) causes elongation arrest within the ribosome. Mutations that bypass the elongation arrest were isolated in 23S rRNA and L22 r protein. Such suppressor mutations occurred at a few specific residues of these components, which all face the narrowest constriction of the ribosomal exit tunnel. Thus, we suggest that this region of the exit tunnel interacts with nascent translation products and functions as a discriminating gate.
FtsH is a cytoplasmic membrane protein that has N-terminally located transmembrane segments and a main cytosolic region consisting of AAA-ATPase and Zn2+-metalloprotease domains. It forms a homo-hexamer, which is further complexed with an oligomer of the membrane-bound modulating factor HflKC. FtsH degrades a set of short-lived proteins, enabling cellular regulation at the level of protein stability. FtsH also degrades some misassembled membrane proteins, contributing to their quality maintenance. It is an energy-utilizing and processive endopeptidase with a special ability to dislocate membrane protein substrates out of the membrane, for which its own membrane-embedded nature is essential. We discuss structure-function relationships of this intriguing enzyme, including the way it recognizes the soluble and membrane-integrated substrates differentially, on the basis of the solved structure of the ATPase domain as well as extensive biochemical and genetic information accumulated in the past decade on this enzyme.
Newly synthesized membrane proteins must be accurately inserted into the membrane, folded and assembled for proper functioning. The protein YidC inserts its substrates into the membrane, thereby facilitating membrane protein assembly in bacteria; the homologous proteins Oxa1 and Alb3 have the same function in mitochondria and chloroplasts, respectively. In the bacterial cytoplasmic membrane, YidC functions as an independent insertase and a membrane chaperone in cooperation with the translocon SecYEG. Here we present the crystal structure of YidC from Bacillus halodurans, at 2.4 Å resolution. The structure reveals a novel fold, in which five conserved transmembrane helices form a positively charged hydrophilic groove that is open towards both the lipid bilayer and the cytoplasm but closed on the extracellular side. Structure-based in vivo analyses reveal that a conserved arginine residue in the groove is important for the insertion of membrane proteins by YidC. We propose an insertion mechanism for single-spanning membrane proteins, in which the hydrophilic environment generated by the groove recruits the extracellular regions of substrates into the low-dielectric environment of the membrane.
Oxidation of cysteine pairs to disulfide requires cellular factors present in the bacterial periplasmic space. DsbB is an E. coli membrane protein that oxidizes DsbA, a periplasmic dithiol oxidase. To gain insight into disulfide bond formation, we determined the crystal structure of the DsbB-DsbA complex at 3.7 A resolution. The structure of DsbB revealed four transmembrane helices and one short horizontal helix juxtaposed with Cys130 in the mobile periplasmic loop. Whereas DsbB in the resting state contains a Cys104-Cys130 disulfide, Cys104 in the binary complex is engaged in the intermolecular disulfide bond and captured by the hydrophobic groove of DsbA, resulting in separation from Cys130. This cysteine relocation prevents the backward resolution of the complex and allows Cys130 to approach and activate the disulfide-generating reaction center composed of Cys41, Cys44, Arg48, and ubiquinone. We propose that DsbB is converted by its specific substrate, DsbA, to a superoxidizing enzyme, capable of oxidizing this extremely oxidizing oxidase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.