Nuclear organelles, unlike many cytoplasmic organelles, lack investing membranes and are thus in direct contact with the surrounding nucleoplasm. Because the properties of the nucleoplasm and nuclear organelles influence the exchange of molecules from one compartment to another, it is important to understand their physical structure. We studied the density of the nucleoplasm and the density and permeability of nucleoli, Cajal bodies (CBs), and speckles in the Xenopus oocyte nucleus or germinal vesicle (GV). Refractive indices were measured by interferometry within intact GVs isolated in oil. The refractive indices were used to estimate protein concentrations for nucleoplasm (0.106 g/cm 3 ), CBs (0.136 g/cm 3 ), speckles (0.162 g/cm 3 ), and the dense fibrillar region of nucleoli (0.215 g/cm 3 ). We determined similar protein concentrations for nuclear organelles isolated in aqueous media, where they are no longer surrounded by nucleoplasm. To examine the permeability of nuclear organelles, we injected fluorescent dextrans of various molecular masses (3-2000 kDa) into the cytoplasm or directly into the GV and measured the extent to which they penetrated the organelles. Together, the interferometry and dextran penetration data show that organelles in the Xenopus GV have a low-density, sponge-like structure that provides access to macromolecules from the nucleoplasm.
Cajal bodies (CBs) are evolutionarily conserved nuclear organelles that contain many factors involved in the transcription and processing of RNA. It has been suggested that macromolecular complexes preassemble or undergo maturation within CBs before they function elsewhere in the nucleus. Most such models of CB function predict a continuous flow of molecules between CBs and the nucleoplasm, but there are few data that directly support this view. We used fluorescence recovery after photobleaching (FRAP) on isolated Xenopus oocyte nuclei to measure the steady-state exchange rate between the nucleoplasm and CBs of three fluorescently tagged molecules: U7 small nuclear RNA, coilin, and TATA-binding protein (TBP). In the nucleoplasm, the apparent diffusion coefficients for the three molecules ranged from 0.26 to 0.40 μm2 s−1. However, in CBs, fluorescence recovery was markedly slower than in the nucleoplasm, and there were at least three kinetic components. The recovery rate within CBs was independent of bleach spot diameter and could not be attributed to high CB viscosity or density. We propose that binding to other molecules and possibly assembly into larger complexes are the rate-limiting steps for FRAP of U7, coilin, and TBP inside CBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.