The function and maintenance of muscle stem cells (Mu SC s) are tightly regulated by signals originating from their niche environment. Skeletal myofibers are a principle component of the Mu SC niche and are in direct contact with the muscle stem cells. Here, we show that Myf6 establishes a ligand/receptor interaction between muscle stem cells and their associated muscle fibers. Our data show that Myf6 transcriptionally regulates a broad spectrum of myokines and muscle‐secreted proteins in skeletal myofibers, including EGF . EGFR signaling blocks p38 MAP kinase‐induced differentiation of muscle stem cells. Homozygous deletion of Myf6 causes a significant reduction in the ability of muscle to produce EGF , leading to a deregulation in EGFR signaling. Consequently, although Myf6‐knockout mice are born with a normal muscle stem cell compartment, they undergo a progressive reduction in their stem cell pool during postnatal life due to spontaneous exit from quiescence. Taken together, our data uncover a novel role for Myf6 in promoting the expression of key myokines, such as EGF , in the muscle fiber which prevents muscle stem cell exhaustion by blocking their premature differentiation.
Adult stem cells are indispensable for tissue regeneration. Tissue-specific stem cells reside in a specialized location called their niche, where they are in constant cross talk with neighboring niche cells and circulatory signals from their environment. Aging has a detrimental effect on the number and the regenerative function of various stem cells. However, whether the loss of stem cell function is a cause or consequence of their aging niche is unclear. Using skeletal muscle stem cells (MuSCs) as a model, we decouple cell-intrinsic from niche-mediated extrinsic effects of aging on their transcriptome. By combining in vivo MuSC heterochronic transplantation models and computational methods, we show that on a genome-wide scale, age-related altered genes fall into two distinct categories regarding their response to the niche environment. Genes that are inelastic in their response to the niche exhibit altered chromatin accessibility and are associated with differentially methylated regions (DMRs) between young and aged cells. On the other hand, genes that are restorable by niche exposure exhibit altered transcriptome but show no change in chromatin accessibility or DMRs. Taken together, our data suggest that the niche environment plays a decisive role in controlling the transcriptional activity of MuSCs, and exposure to a young niche can reverse approximately half of all age-associated changes that are not epigenetically encoded. The muscle niche therefore serves as an important therapeutic venue to mitigate the negative consequence of aging on tissue regeneration.
Adult stem cells are indispensable for tissue regeneration, but their function declines with age. The niche environment in which the stem cells reside plays a critical role in their function. However, quantification of the niche effect on stem cell function is lacking. Using muscle stem cells (MuSC) as a model, we show that aging leads to a significant transcriptomic shift in their subpopulations accompanied by locus-specific gain and loss of chromatin accessibility and DNA methylation. By combining in vivo MuSC transplantation and computational methods, we show that the expression of approximately half of all age-altered genes in MuSCs from aged male mice can be restored by exposure to a young niche environment. While there is a correlation between gene reversibility and epigenetic alterations, restoration of gene expression occurs primarily at the level of transcription. The stem cell niche environment therefore represents an important therapeutic target to enhance tissue regeneration in aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.