The networks of predator-prey interactions in ecological systems are remarkably complex, but nevertheless surprisingly stable in terms of long term persistence of the system as a whole. In order to understand the mechanism driving the complexity and stability of such food webs, we developed an eco-evolutionary model in which new species emerge as modifications of existing ones and dynamic ecological interactions determine which species are viable. The food-web structure thereby emerges from the dynamical interplay between speciation and trophic interactions. The proposed model is less abstract than earlier evolutionary food web models in the sense that all three evolving traits have a clear biological meaning, namely the average body mass of the individuals, the preferred prey body mass, and the width of their potential prey body mass spectrum. We observed networks with a wide range of sizes and structures and high similarity to natural food webs. The model networks exhibit a continuous species turnover, but massive extinction waves that affect more than 50% of the network are not observed.
Species interactions are responsible for many key mechanisms that govern the dynamics of ecological communities. Variation in the way interactions are organized among species results in different network structures, which translates into a community's ability to resist collapse and change. To better understand the factors involved in dictating ongoing dynamics in a community at a given time, we must unravel how interactions affect the assembly process. Here, we build a novel, integrative conceptual model for understanding how ecological communities assemble that combines ecological networks and island biogeography theory, as well as the principles of niche theory. Through our conceptual model, we show how the rate of species turnover and gene flow within communities will influence the structure of ecological networks. We conduct a preliminary test of our predictions using plant-herbivore networks from differently-aged sites in the Hawaiian archipelago. Our approach will allow future modeling and empirical studies to develop a better understanding of the role of the assembly process in shaping patterns of biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.