This study was conducted to examine the role of myocardial ATP-sensitive potassium (K ATP ) channels in exercise-induced protection from ischaemia-reperfusion (I-R) injury. Female rats were either sedentary (Sed) or exercised for 12 weeks (Tr). Hearts were excised and underwent a 1-2 h regional I-R protocol. Prior to ischaemia, hearts were subjected to pharmacological blockade of the sarcolemmal K ATP channel with HMR 1098 (SedHMR and TrHMR), mitochondrial blockade with 5-hydroxydecanoic acid (5HD; Sed5HD and Tr5HD), or perfused with buffer containing no drug (Sed and Tr). Infarct size was significantly smaller in hearts from Tr animals (35.4 ± 2.3 versus 44.7 ± 3.0% of the zone at risk for Tr and Sed, respectively). Mitochondrial K ATP blockade did not abolish the training-induced infarct size reduction (30.0 ± 3.4 versus 38.0 ± 2.6 in Tr5HD and Sed5HD, respectively); however, sarcolemmal K ATP blockade completely eradicated the training-induced cardioprotection. Infarct size was 71.2 ± 3.3 and 64.0 ± 2.4% of the zone at risk for TrHMR and Sed HMR. The role of sarcolemmal K ATP channels in Tr-induced protection was also supported by significant increases in both subunits of the sarcolemmal K ATP channel following training. LV developed pressure was better preserved in hearts from Tr animals, and was not influenced by addition of HMR 1098. 5HD decreased pressure development regardless of training status, from 15 min of ischaemia through the duration of the protocol. This mechanical dysfunction was likely to be due to a 5HD-induced increase in myocardial Ca 2+ content following I-R. The major findings of the present study are: (1) unlike all other known forms of delayed cardioprotection, infarct sparing following chronic exercise was not abolished by 5HD; (2) pharmacological blockade of the sarcolemmal K ATP channel nullified the cardioprotective benefits of exercise training; and (3) increased expression of sarcolemmal K ATP channels was observed following chronic training.
The effect of endurance training on the resistance of the heart to left ventricular (LV) functional deficit and infarction after a transient regional ischemia and subsequent reperfusion was examined. Female Sprague-Dawley rats were randomly assigned to an endurance exercise training (Tr) group or a sedentary (Sed) control group. After 20 wk of training, hearts were excised, perfused, and instrumented for assessment of LV mechanical function, and the left anterior descending coronary artery was occluded to induce a transient regional ischemia (1 h) that was followed by 2 h of reperfusion. Throughout much of the regional ischemia-reperfusion protocol, coronary flow rates, diastolic function, and LV developed pressure were better preserved in hearts from Tr animals. During the regional ischemia, coronary flow to myocardium outside the ischemic zone at risk (ZAR) was maintained in Tr hearts, whereas it progressively fell in Sed hearts. On release of the coronary artery ligature, flow to the ZAR was greater in Tr than in Sed hearts. Infarct size, expressed as a percentage of the ischemic ZAR, was significantly smaller in hearts from Tr rats (24 +/- 3 vs. 32 +/- 2% of ZAR, P < 0.05). Mn- and CuZn-SOD protein expression were higher in the LV myocardium of Tr animals (P < 0.05 for both isoforms). Our data indicate that long-term exercise training leads to infarct sparing and better maintenance of coronary flow and mechanical function after ischemia-reperfusion.
The present study tests the hypothesis that endurance exercise training (ETr) reverses age-associated alterations in expression of Na+-K+-ATPase subunit isoforms in rat skeletal muscles. Expression of the isoforms was examined in 16-mo-old sedentary middle-aged, 29-mo-old sedentary senescent, and 29-mo-old treadmill exercise-trained senescent Fischer 344 × Brown Norway rats. Levels of the α1-isoform increased with age in red gastrocnemius (GR), white gastrocnemius (GW), and extensor digitorum longus (EDL) muscles, and ETr further increased its levels. Levels of the α2-isoform were unchanged in GR, had a strong trend for a decrease in GW, and decreased significantly in EDL. ETr increased expression of the α2-isoform in all three muscle groups. There was no increase in expression of the β1-isoform in GR, GW, or EDL with age, whereas ETr markedly increased its levels in the muscles. There was a marked decrease with age in expression of the β2-isoform in the muscle groups that was not reversed by ETr. By contrast, β3-isoform levels increased with age in GR and GW, and ETr was able to reverse this increase. Na+-K+-ATPase enzyme activity was unchanged with age in GR and GW but increased in EDL. ETr increased enzyme activity in GR and GW and did not change in EDL. Myosin heavy chain isoforms in the muscle groups did not change significantly with age; ETr caused a general shift toward more oxidative fibers. Thus ETr differentially modifies age-associated alterations in expression of Na+-K+-ATPase subunit isoforms, and a mechanism(s) other than physical inactivity appears to play significant role in some of the age-associated changes.
Phospholemman (PLM) is a recently identified accessory protein of the Na(+)-K(+)-ATPase (NKA), with a high level of expression in skeletal muscle. The objectives of this study are to characterize the PLM in skeletal muscle and to test the hypothesis that, as an accessory protein of NKA, expression of PLM and its association with the alpha-subunits of NKA is regulated during aging and with exercise training. PLM was characterized in skeletal muscle of 6- and 16-mo-old sedentary middle-aged rats (Ms), and the effects of aging and exercise training were studied in Ms, 29-mo-old sedentary senescent, and 29-mo-old treadmill-exercised senescent rats. Expression of PLM was muscle-type dependent, and immunofluorescence study showed that PLM distributed predominantly on the sarcolemmal membrane of the muscle fibers. Anti-PLM antibody reduced activity of NKA, and thus PLM appears to be required for NKA to express its full activity in skeletal muscle. Expression of PLM was not altered with aging but increased after exercise training. Coimmunoprecipitation studies demonstrated that PLM associates with both the alpha(1)- and alpha(2)-subunit isoforms of NKA. Compared with Ms rats, levels of PLM-associated alpha(1)-subunit increased in 29-mo-old sedentary senescent rats, and treadmill exercise has a tendency to partially reverse it. There was no significant change in PLM-associated alpha(2)-subunit with age, and exercise training has a tendency to increase that level. It is concluded that, in skeletal muscle, PLM appears to be a protein integral to the NKA complex and that PLM has the potential to modulate NKA in an isoform-specific and muscle type-dependent manner in aging and after exercise training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.