The type II classic cadherin subfamily contains a number of extensively studied genes (cdh6, cdh8, cdh11); however, the expression and function of the other members have only been partially described. Here we employed reverse-transcription polymerase chain reaction (RT-PCR) and in situ hybridization to characterize cortical and hippocampal expression of all type II cadherins (with the exception of the nonneural Cdh5) in the developing and adult mouse brain. Many of these genes have ubiquitous mRNA distribution patterns throughout development, indicating high functional redundancy, which might be necessary for safe production of the strictly laminated structure of these regions. A few of the genes examined, however, exhibit a unique spatiotemporal pattern of expression, particularly during cortical development, indicating a potentially specific function. In the developing and adult hippocampus, almost all of these genes are strongly expressed in glutamatergic neurons of the CA1-CA3 pyramidal cell layer and the granular layer of the dentate gyrus. In contrast, there are significant expression differences within the GABAergic cells of the adult hippocampus. Our results indicate that selective expression of type II cadherins may generate a flexible cell-adhesion machinery for developing neurons to selectively bind to each other, but can also provide a high level of security due to the multiple overlaps in the expression domains.
The multiplex role of cadherin-based adhesion complexes during development of pallial excitatory neurons has been thoroughly characterized. In contrast, much less is known about their function during interneuron development. Here, we report that conditional removal of N-cadherin (Cdh2) from postmitotic neuroblasts of the subpallium results in a decreased number of Gad65-GFP-positive interneurons in the adult cortex. We also found that interneuron precursor migration into the pallium was already delayed at E14. Using immunohistochemistry and TUNEL assay in the embryonic subpallium, we excluded decreased mitosis and elevated cell death as possible sources of this defect. Moreover, by analyzing the interneuron composition of the adult somatosensory cortex, we uncovered an unexpected interneuron-type-specific defect caused by Cdh2-loss. This was not due to a fate-switch between interneuron populations or altered target selection during migration. Instead, potentially due to the migration delay, part of the precursors failed to enter the cortical plate and consequently got eliminated at early postnatal stages. In summary, our results indicate that Cdh2-mediated interactions are necessary for migration and survival during the postmitotic phase of interneuron development. Furthermore, we also propose that unlike in pallial glutamatergic cells, Cdh2 is not universal, rather a cell type-specific factor during this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.