A series of star-shaped poly(2-ethyl-2-oxazoline)s was prepared by cationic polymerization. The polymerization was initiated by dipentaerythrityl hexakis(4-nitrobenzene sulfonate) and a tosylated hyperbranched polymer of glycidol. The polymerization proceeded in a controlled manner. The star structure of the products was determined by nuclear magnetic resonance. The molar mass distributions that were measured by gel permeation chromatography with multiangle laser light scattering were narrow, and the experimental values of the molar masses were close to those predicted. The very compact structure of the polymers obtained (compared with the linear counterparts) confirmed the star formation. The star poly(2-ethyl-2-oxazoline)s show a phase transition temperature in the range 62-75 • C. Comparison of this phase transition temperature with that of the linear poly(2-ethyl-2-oxazoline)s with the same molar masses indicates the influence of molar mass and topological structure of the macromolecule on temperature behavior. The prepared copolymers are spherical, which might be useful for the controlled transport and release of active compounds.
The purpose of this work was to synthesize and characterize oligoglycerols with the chains of more than four repeating units. Those oligoglycerols may have some interesting applications, among others, as polyoxyalkylation starters. The glycerol oligomerization process was carried out during 12 h, at 230 °C, under the pressure of 0.4 bar, with the use of sodium carbonate as a homogeneous basic catalyst; various concentrations of the catalyst in the reaction medium were used. The reaction products were analyzed with the use of direct infusion electrospray ionization mass spectrometry (ESI-MS), nuclear magnetic resonance (13C NMR) and Fourier transform infrared spectroscopy (FTIR) techniques. Based on the analytical findings, the compositions of the obtained product mixtures and the structures of oligoglycerols present in individual fractions were determined. The effect of catalyst concentration on the composition of the post-reaction mixture was observed. Moreover, in addition to the conventional linear oligomers (α,α-oligoglycerols), two new types of the oligomers were for the first time detected in the post-reaction mixture: one with two hydroxyl groups and the other with a carboxylate group at the α-carbon atom.
Activity of a titanium catalyst supported on a bimetallic magnesium-aluminium system, involving a Lewis base [MgCl 2 (THF) 2 /Al(C 2 H 5 ) 2 Cl], was studied in ethylene polymerization, and the effect of the catalyst composition on the properties of the final polymer produced was investigated. Analysis and discussion of the findings covering also some part of the kinetic study, resulted in defining the roles for MgCl 2 and a Lewis base in the third-generation Ziegler-Natta catalysts. MgCl 2 forms a bimetallic complex with an organoaluminium compound, which involves also a Lewis base. Its reaction with TiCl 4 yields a very active catalyst wherein the Mg : Ti molar ratio is close to 1. This means that MgCl 2 is involved in creating catalytic active sites. The structure of these catalytic sites were suggested. Hence, the role for MgCl 2 can be twofold: it is a component of a catalytic active site, and it is a support if Mg : Ti ú 5. It was found in the study that the catalytic function of MgCl 2 can be maintained while its supporting function can be omitted. Thus, MgCl 2 can be substituted for Al 2 O 3 and the catalytic system obtained will have the same activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.