Activators of nuclear factor-erythroid 2-related factor 2 (NRF2) could lead to promising therapeutics for prevention and treatment of oxidative stress and inflammatory disorders. Ubiquitination and subsequent degradation of the transcription factor NRF2 is mediated by Kelch-like ECH-associated protein-1 (KEAP1). Inhibition of the KEAP1/NRF2 interaction with small molecules leads to NRF2 activation. Previously, we and others described naphthalene-based NRF2 activators, but the 1,4-diaminonaphthalene scaffold may not represent a drug-like scaffold. Paying particular attention to aqueous solubility, metabolic stability, potency, and mutagenicity, we modified a previously known, naphthalene-based nonelectrophilic NRF2 activator to give a series of non-naphthalene and heterocyclic scaffolds. We found that, compared to previously reported naphthalene-based compounds, a 1,4-isoquinoline scaffold provides a better mutagenic profile without sacrificing potency, stability, or solubility.
Apidaecin (Api), an unmodified 18-amino-acid-long proline-rich antibacterial peptide produced by bees, has been recently described as a specific inhibitor of translation termination. It invades the nascent peptide exit tunnel of the postrelease ribosome and traps the release factors preventing their recycling. Api binds in the exit tunnel in an extended conformation that matches the placement of a nascent polypeptide and establishes multiple contacts with ribosomal RNA (rRNA) and ribosomal proteins. Which of these interactions are critical for Api’s activity is unknown. We addressed this problem by analyzing the activity of all possible single-amino-acid substitutions of the Api variants synthesized in the bacterial cell. By conditionally expressing the engineered api gene, we generated Api directly in the bacterial cytosol, thereby bypassing the need for importing the peptide from the medium. The endogenously expressed Api, as well as its N-terminally truncated mutants, retained the antibacterial properties and the mechanism of action of the native peptide. Taking advantage of the Api expression system and next-generation sequencing, we mapped in one experiment all the single-amino-acid substitutions that preserve or alleviate the on-target activity of the Api mutants. Analysis of the inactivating mutations made it possible to define the pharmacophore of Api involved in critical interactions with the ribosome, transfer RNA (tRNA), and release factors. We also identified the Api segment that tolerates a variety of amino acid substitutions; alterations in this segment could be used to improve the pharmacological properties of the antibacterial peptide.
Given the ubiquity of the ⍺-helix in the proteome, there has been much research in developing mimics of ⍺-helices, and most of this study has been toward developing proteinprotein interaction inhibitors. A common strategy for mimicking ⍺-helices has been through the use of constrained, helical peptides. The addition of a constraint typically provides for conformational and proteolytic stability and, in some cases, cell permeability. Some of the most well-known strategies included are lactam formation and hydrocarbon "stapling." Beyond those strategies, there have been many recent advances in developing constrained peptides. The purpose of this review is to highlight recent advances in the development of new helix-stabilizing technologies, constraint diversification strategies, tether diversification strategies, and combination strategies that create new bicyclic helical peptides. K E Y W O R D S alpha helix, helical peptides, peptide chemistry, protein-protein interactions 1 | INTRODUCTIONThere are a multitude of protein-protein interactions in the cell that are mediated by ⍺-helices, and in many disease states it would be advantageous to mimic features of an ⍺-helix with a small molecule or peptide. A common strategy for mimicking ⍺-helices has been through the use of constrained, helical peptides. 1-9 Doing so provides for conformational stability by reducing the number of degrees of freedom of the peptide and/or by facilitating ⍺-helical hydrogen bonding. This strategy also often provides for proteolytic stability: many proteases recognize an extended peptide conformation, but because of the conformational rigidity imparted by the constraint, helical peptides are not readily recognized by proteases that otherwise might recognize an Med Res Rev. 2019;39:749-770.wileyonlinelibrary.com/journal/med
Many botanicals used for women's health contain estrogenic (iso)flavonoids. The literature suggests that estrogen receptor beta (ERβ) activity can counterbalance ERα-mediated proliferation, thus, providing a better safety profile. A structure-activity relationship study of (iso)flavonoids was conducted to identify ERβ-preferential structures, overall estrogenic activity,
The oxidative stress response, gated by the protein–protein interaction of KEAP1 and NRF2, has garnered significant interest in the past decade. Misregulation in this pathway has been implicated in disease states such as multiple sclerosis, rheumatoid arthritis, and diabetic chronic wounds. Many of the known activators of NRF2 are electrophilic in nature and may operate through several biological pathways rather than solely through the activation of the oxidative stress response. Recently, our lab has reported a nonelectrophilic, monoacidic, naphthalene-based NRF2 activator which exhibited good potency in vitro. Herein, we report a detailed structure–activity relationship of naphthalene-based NRF2 activators, an X-ray crystal structure of our monoacidic KEAP1 inhibitor, and identification of an underexplored area of the NRF2 binding pocket of KEAP1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.