The industrial internet of things (IIoT) is growing at an exponential rate generating massive amounts of industrial data. This data must be leveraged to support business and operational goals. As a result, there is an urgent need for adopting big data technologies to enable data analytics in industrial automation. This paper explores interrelations between IIoT and big data technologies and how they work together to generate business insights from industrial data. Additionally, requirements for cloud-based solutions are derived from the Industrie 4.0 use case scenario value-based-services, focusing on condition monitoring and predictive maintenance services. A survey of selected cloud-based platforms is conducted to examine how these platforms meet the requirements derived from the use case. Results show that existing general cloud platforms should adopt more IIoT applications and platforms, while existing industrial cloud platforms should add big data frameworks to their portfolio. Finally, an architecture for integrating cloudbased IIoT and big data solutions is introduced and issues regarding the use of public cloud for IIoT applications are discussed.
Industrial applications in the era of Industry 4.0 require more flexibility for the integration of new sensors and actuators and also demand high mobility for which wired communication is unsuitable. For the integration of wireless communication systems in an industrial application, guaranteed high Quality of Services (QoSs) is a premise that is not fully covered by wireless systems such as WiFi, Bluetooth, ZigBee or LTE. For the latter, the evolution to 5G systems as private or public networks is a currently ongoing process.This paper examines the legal and technical requirements to operate a private mobile cell in a smart factory and presents measurements on latency and bandwidth performance of current state of the art hardware as well as the integration in an industrial Layer 2 communication system. The system in use is ready for only low demanding industrial real-time applications but, nevertheless, the advantages of a licensed frequency range for private use become visible. Furthermore, some concepts defined by the 3GPP, e.g. mini-slots and grant free transmission, are pointed out that are expected to enhance the QoS guarantees for industrial traffic.
Zusammenfassung. Die Anzahl miteinander vernetzter Sensoren, Geräte und Systeme wird in den nächsten Jahren weltweit weiter massiv ansteigen. Die Erhebung dieser Menge an Daten, es wird von Big Data gesprochen, ist nur dann sinnvoll, wenn Schlussfolgerungen daraus extrahiert werden. Auch die Anwendungsbereiche industrielle Automation und Smart City werden von Internet of Things-(IoT) und Big Data-Technologie derzeit maßgebend geprägt. Mit dem Anstieg von Datenquellen (IoT) und somit erzeugten Daten, die verarbeitet und analysiert werden müssen, müssen IT-Infrastrukturen entwickelt und angewandt werden, die die Anforderungen im Zusammenhang mit Big Data und IoT erfüllen. Eine Möglichkeit die wachsenden Datenmengen und Anforderungen zu bewältigen bietet die Integration von IoT und Big Data in Cloud Infrastrukturen. Heute sind viele Cloud-Lösungen marktverfügbar und die Begriffe IoT und Big Data werden inflationär genutzt, daher fällt es zunehmend schwer eine passende Lösung auszuwählen, die spezifischen Anforderungen einer Anwendung genügen. In diesem Paper wird eine strukturierte Anforderungstaxonomie entwickelt, die die spezifischen industriellen Anforderungen hervorhebt und die es erleichtert Cloud Plattformen passend zur Applikation auszuwählen und zu konfigurieren. Die Taxonomie wird an einem Use Case aus der industriellen Produktion und einem Use Case aus dem Smart City-Bereich evaluiert.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.