Cancer patients often experience loss in body weight and also a decrease in muscle mass, which results in the reduction of physical activity and mobilization of the patient. To decelerate the loss of muscle mass, as part of the cancer treatment patients frequently undergo physical therapy and considering the physical capabilities of the patients, with moderate loads. Moreover, frequent studies also observed for cancer patients, together with the decrease in muscle mass a shift into fast-twitch muscle fibers from slow-twitch fibers. The aim of our study therefore was to determine how motor fibers behave under moderate isometric load executed until total exhaustion. 11 university students (G1), and 14 elite athletes (G2) participated in the study. 65% of the maximal voluntary contraction (MVC) was determined for the biceps brachii muscle, and with this load holding a weight, participants had to sustain a 90 deg. isometric elbow flexion in a standing posture until complete fatigue occurred. EMG activity for the biceps brachii muscle was measured and frequency analysis was performed. 3 windows were determined in the fatiguing protocol: the first (W1), middle (W2), and last (W3) 5 s, and also frequency analysis for MVC was performed (MAX) between 0 and 260 Hz with 20 Hz wide frequency bands. The results indicate, that as the protocol progressed in time and the effect of fatigue increased (from W1 to W3) the activity of low frequency muscle fibers significantly increased (0-40 Hz) while activity of high frequency muscle fibers (60-260 Hz) significantly decreased for G1 and G2 groups identically. We can conclude, that training applied with constant moderate tension as fatigue increases will result in the increased activation of the lower frequency slowtwitch muscle fibers, but the increase of fatigue in the lower frequency fibers will not result in the increase in the activation level of the higher frequency fast-twitch fibers. Consequently, because as slow-twitch fibers are being used at moderate loads and even when fatigue occurs in these fibers the fast-twitch fibers will not work, higher muscle loads are needed if the aim is to activate fast-twitch fibers. Considering the shift into fast-twitch muscle fibers from slow-twitch fibers for cancer patients, in some cases if the patient's age and physical status allows during the physical treatment, higher loads and consequently higher levels of activation might be beneficial for the retardment of loss concerning the fast-twitch fiber mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.