Fractionally stable distributions 179 THEOREM 2. Under the above assumptions concerning the r.v.'s T\ and Χι, there exists a finite positive constant CQ = co(ct, β) such thatThus, we shall name distribution Q(x;a,ß, 1) and Q(t\ß,a, 1) for«,/? e (0, 1] and θ = 1 coupled relative to space-time.Going over from finite dimensional distributions of process Σ (?) to the consideration of weak convergence of this process in Skorokhod space D([0, oo), M), we note that in [23] it has been proved that under conditions (6) and (7) the continuous-time random walk process weakly converge to the superposition Z{t) = A(B(t)) with corresponding normalisation. Here A (t) is the self-similar random process with stationary independent increments (Levy) process with Hurst exponent 1 /a, B(t) is the self-similar random process with Hurst exponent 1/β. Moreover, processes A(t) and Β(t) are independent andIt follows that increments of B(t) for β < 1 is non stationary. So B(t) is not a process with stationary increments. The process Z(t) is a self-similar one, but not a process with stationary increments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.