The Brunnstrom recovery stages are moderately correlated with neurophysiological measures and highly correlated with the MMAS regarding the evaluation of motor recovery in stroke patients. The Brunnstrom recovery stages can be used as a valid test for the assessment of patients with post-stroke hemiplegia.
This study suggests that DN reduced wrist flexors spasticity and alpha motor neuron excitability in patients with stroke, and improvements persisted for one hour after DN.
The current study aimed to investigate the potential of carbon nanofibers to promote peripheral nerve regeneration. The carbon nanofiber-imbedded scaffolds were produced from polycaprolactone and carbon nanofibers using thermally induced phase separation method. Electrospinning technique was utilized to fabricate polycaprolactone/collagen nanofibrous sheets. The incorporation of carbon nanofibers into polycaprolactone's matrix significantly reduced its electrical resistance from 4.3 × 10 9 ± 0.34 × 10 9 Ω to 8.7 × 10 4 ± 1.2 × 10 4 Ω. Further in vitro studies showed that polycaprolactone/carbon nanofiber scaffolds had the porosity of 82.9 ± 3.7% and degradation rate of 1.84 ± 0.37% after 30 days and 3.58 ± 0.39% after 60 days. The fabricated scaffolds were favorable for PC-12 cells attachment and proliferation. Neural guidance channels were produced from the polycaprolactone/carbon nanofiber composites using water jet cutter machine then incorporated with PCL/ collagen nanofibrous sheets. The composites were implanted into severed rat sciatic nerve. After 12 weeks, the results of histopathological examinations and functional analysis proved that conductive conduit out-performed the non-conductive type and induced no toxicity or immunogenic reactions, suggesting its potential applicability to treat peripheral nerve damage in the clinic.Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
IntroductionReliable and valid tools must be used to assess spasticity in clinical practise and research settings. There is a paucity of literature regarding the validity of the Modified Modified Ashworth Scale (MMAS) and the Modified Tardieu Scale (MTS). No study, to date, has been performed to compare the validity of the MMAS and the MTS. This neurophysiological study protocol will compare the validity of the MMAS and the MTS in the assessment of poststroke wrist flexor spasticity.Methods and analysisThirty-two patients with stroke from the University Rehabilitation clinics will be recruited to participate in this cross-sectional, non-interventional study. All measurements will be taken in the Physical Medicine and Rehabilitation Department of Shafa University Hospital in Tehran, Iran. First, wrist flexor spasticity will be assessed clinically using the MMAS and MTS. The tests will be applied randomly. For the MTS, the components of R1, R2, R2−R1 and quality of muscle reaction will be measured. Second, neurophysiological measures of H-reflex latency, Hmax/Mmax ratio, Hslp and Hslp/Mslp ratio will be collected from the affected side. The results will be analysed using Spearman's ρ test or Pearson's correlation test to determine the validity of the MMAS and the MTS as well as to compare the validity between the MMAS and the MTS.Ethics and disseminationThe Research Council, School of Rehabilitation and the Ethics Committee of Tehran University of Medical Sciences (TUMS) approved the study protocol. The study results will be disseminated in peer-reviewed publications and presented at international congresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.