We investigated whether the Huntington's disease (HD) gene mutation may produce either primary or secondary effects on energy metabolism. 31P magnetic resonance spectroscopy demonstrated a significant decrease in the phosphocreatine to inorganic phosphate ratio in resting muscle of 8 patients as compared with 8 control subjects. The cerebrospinal fluid lactate-pyruvate ratio was significantly increased in 15 patients as compared with 13 control subjects. Lactate concentrations assessed using 1H magnetic resonance spectroscopy are increased in Huntington's disease cerebral cortex. Treatment with coenzyme Q10, an essential cofactor of the electron transport chain, resulted in significant decreases in cortical lactate concentrations in 18 patients, which reversed following withdrawal of therapy. These findings provide evidence for a generalized energy defect in Huntington's disease, and suggest a possible therapy.
Background and Purpose-Tissue signatures from acute MR imaging of the brain may be able to categorize physiological status and thereby assist clinical decision making. We designed and analyzed statistical algorithms to evaluate the risk of infarction for each voxel of tissue using acute human functional MRI. Methods-Diffusion-weighted MR images (DWI) and perfusion-weighted MR images (PWI) from acute stroke patients scanned within 12 hours of symptom onset were retrospectively studied and used to develop thresholding and generalized linear model (GLM) algorithms predicting tissue outcome as determined by follow-up MRI. The performances of the algorithms were evaluated for each patient by using receiver operating characteristic curves. Results-At their optimal operating points, thresholding algorithms combining DWI and PWI provided 66% sensitivity and 83% specificity, and GLM algorithms combining DWI and PWI predicted with 66% sensitivity and 84% specificity voxels that proceeded to infarct. Thresholding algorithms that combined DWI and PWI provided significant improvement to algorithms that utilized DWI alone (Pϭ0.02) but no significant improvement over algorithms utilizing PWI alone (Pϭ0.21). GLM algorithms that combined DWI and PWI showed significant improvement over algorithms that used only DWI (Pϭ0.02) or PWI (Pϭ0.04). The performances of thresholding and GLM algorithms were comparable (PϾ0.2). Conclusions-Algorithms that combine acute DWI and PWI can assess the risk of infarction with higher specificity and sensitivity than algorithms that use DWI or PWI individually. Methods for quantitatively assessing the risk of infarction on a voxel-by-voxel basis show promise as techniques for investigating the natural spatial evolution of ischemic damage in humans.
Background and Purpose-We sought to map early regional ischemia and infarction in patients with middle cerebral artery (MCA) stroke and compare them with final infarct size using advanced MRI techniques. MRI can now delineate very early infarction by diffusion-weighted imaging (DWI) and abnormal tissue perfusion by perfusion-weighted imaging (PWI). Methods-Seventeen patients seen within 12 hours of onset of MCA stroke had MR angiography, standard MRI, and PWI and DWI MRI. PWI maps were generated by analysis of the passage of intravenous contrast bolus through the brain. Cerebral blood volume (CBV) was determined after quantitative analysis of PWI data. Volumes of the initial DWI and PWI lesion were calculated and compared with a final infarct volume from a follow-up imaging study (CT scan or MRI). Results-Group 1 (10 patients) had MCA stem (M1) occlusion by MR angiography. DWI lesion volumes were smaller than the volumes of CBV abnormality. In 7 patients the final stroke volume was larger or the same, and in 3 it was smaller than the initial CBV lesion. Group 2 (7 patients) had an open M1 on MR angiography with distal MCA stroke. In 6 group 2 patients, the initial DWI lesion matched the initial CBV abnormality and the final infarct. Conclusions-Most patients with M1 occlusion showed progression of infarction into the region of abnormal perfusion.In
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.