Manual examination of faecal smear samples to identify the existence of parasitic eggs is very time-consuming and can only be done by specialists. Therefore, an automated system is required to tackle this problem since it can relate to serious intestinal parasitic infections. This paper reviews the ICIP 2022 Challenge on parasitic egg detection and classification in microscopic images. We describe a new dataset for this application, which is the largest dataset of its kind. The methods used by participants in the challenge are summarised and discussed along with their results.
Red blood cell morphology analysis plays an essential role in diagnosing many diseases caused by RBC disorders. This manual inspection is a long process and requires practice and experience. Since recent computer vision and image processing in the medical imaging area can provide efficient tools, it can help hematologists to automatically analyze images from a microscope in a reduced time and cost. This research presents a new method to segment and classify RBCs from blood smear images. The process started from data collection, which a new application was created for precisely labeling. The normalization was done to reduce the color space and allowed the trained model to not be biased on color. Then, overlapping cells were separated using a new method to find concave points and use direct ellipse fitting to estimate the shape of a single RBC. Lastly, classification using EfficientNet-B1 on 12 red blood cell classes was done. However, to classify multiple classes with deep learning, imbalance problems are common in medical imaging because number of normal samples is always higher than number of rare disease samples. The imbalanced handling techniques were analyzed to deal with this problem. Experimental results showed that the weight balancing technique with augmentation had the potential to deal with imbalance problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.