The environmental challenges the world faces nowadays have never been greater or more complex. Global areas covered by forests and urban woodlands are threatened by natural disasters that have increased dramatically during the last decades, in terms of both frequency and magnitude. Large-scale forest fires are one of the most harmful natural hazards affecting climate change and life around the world. Thus, to minimize their impacts on people and nature, the adoption of well-planned and closely coordinated effective prevention, early warning, and response approaches are necessary. This paper presents an overview of the optical remote sensing technologies used in early fire warning systems and provides an extensive survey on both flame and smoke detection algorithms employed by each technology. Three types of systems are identified, namely terrestrial, airborne, and spaceborne-based systems, while various models aiming to detect fire occurrences with high accuracy in challenging environments are studied. Finally, the strengths and weaknesses of fire detection systems based on optical remote sensing are discussed aiming to contribute to future research projects for the development of early warning fire systems.
This is a review article describing the recent developments in Video based Fire Detection (VFD). Video surveillance cameras and computer vision methods are widely used in many security applications. It is also possible to use security cameras and special purpose infrared surveillance cameras for fire detection. This requires intelligent video processing techniques for detection and analysis of uncontrolled fire behavior. VFD may help reduce the detection time compared to the currently available sensors in both indoors and outdoors because cameras can monitor "volumes" and do not have transport delay that the traditional "point" sensors suffer from. It is possible to cover an area of 100 km2 using a single pan-tilt-zoom camera placed on a hilltop for wildfire detection. Another benefit of the VFD systems is that they can provide crucial information about the size and growth of the fire, direction of smoke propagation.
Every year a large number of wildfires all over the world burn forested lands causing adverse ecological, economic and social impacts. Beyond taking precautionary measures, early warning and immediate response are the only ways to avoid great losses. To this end, in this paper we propose a computer vision approach for fire-flame detection to be used by an early-warning fire monitoring system. Initially, candidate fire regions in a frame are defined using background subtraction and color analysis based on a non-parametric model. Subsequently, the fire behavior is modeled by employing various spatio-temporal features such as color probability, flickering, spatial and spatiotemporal energy, while dynamic texture analysis is applied in each candidate region using linear dynamical systems and a bag of systems approach. To increase the robustness of the algorithm, the spatio-temporal consistency energy of each candidate fire region is estimated by exploiting prior knowledge about the possible existence of fire in neighboring blocks from the current and previous video frames. As a last step, a two-class SVM classifier is used to classify the candidate regions. Experimental results have shown that the proposed method outperforms existing state of the art algorithms.Index Terms-Bag of systems, dynamic textures analysis, fire detection, linear dynamic systems, spatio-temporal modeling 1051-8215 (c)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.