Serogroup X meningococci (NmX) historically have caused sporadic and clustered meningitis cases in sub-Saharan Africa. To study recent NmX epidemiology, we analyzed data from population-based, sentinel and passive surveillance, and outbreak investigations of bacterial meningitis in Togo and Burkina Faso during 2006–2010. Cerebrospinal fluid specimens were analyzed by PCR. In Togo during 2006–2009, NmX accounted for 16% of the 702 confirmed bacterial meningitis cases. Kozah district experienced an NmX outbreak in March 2007 with an NmX seasonal cumulative incidence of 33/100,000. In Burkina Faso during 2007–2010, NmX accounted for 7% of the 778 confirmed bacterial meningitis cases, with an increase from 2009 to 2010 (4% to 35% of all confirmed cases, respectively). In 2010, NmX epidemics occurred in northern and central regions of Burkina Faso; the highest district cumulative incidence of NmX was estimated as 130/100,000 during March–April. Although limited to a few districts, we have documented NmX meningitis epidemics occurring with a seasonal incidence previously only reported in the meningitis belt for NmW135 and NmA, which argues for development of an NmX vaccine.
BackgroundThe only available vaccine that could be potentially beneficial against mycobacterial diseases contains live attenuated bovine tuberculosis bacillus (Mycobacterium bovis) also called Bacillus Calmette-Guérin (BCG). Even though the BCG vaccine is still widely used, results on its effectiveness in preventing mycobacterial diseases are partially contradictory, especially regarding Buruli Ulcer Disease (BUD). The aim of this case-control study is to evaluate the possible protective effect of BCG vaccination on BUD.MethodologyThe present study was performed in three different countries and sites where BUD is endemic: in the Democratic Republic of the Congo, Ghana, and Togo from 2010 through 2013. The large study population was comprised of 401 cases with laboratory confirmed BUD and 826 controls, mostly family members or neighbors.Principal FindingsAfter stratification by the three countries, two sexes and four age groups, no significant correlation was found between the presence of BCG scar and BUD status of individuals. Multivariate analysis has shown that the independent variables country (p = 0.31), sex (p = 0.24), age (p = 0.96), and presence of a BCG scar (p = 0.07) did not significantly influence the development of BUD category I or category II/III. Furthermore, the status of BCG vaccination was also not significantly related to duration of BUD or time to healing of lesions.ConclusionsIn our study, we did not observe significant evidence of a protective effect of routine BCG vaccination on the risk of developing either BUD or severe forms of BUD. Since accurate data on BCG strains used in these three countries were not available, no final conclusion can be drawn on the effectiveness of BCG strain in protecting against BUD. As has been suggested for tuberculosis and leprosy, well-designed prospective studies on different existing BCG vaccine strains are needed also for BUD.
BackgroundIn a previous study PCR analysis of clinical samples from suspected cases of Buruli ulcer disease (BUD) from Togo and external quality assurance (EQA) for local microscopy were conducted at an external reference laboratory in Germany. The relatively poor performance of local microscopy as well as effort and time associated with shipment of PCR samples necessitated the implementation of stringent EQA measures and availability of local laboratory capacity. This study describes the approach to implementation of a national BUD reference laboratory in Togo.MethodologyLarge scale outreach activities accompanied by regular training programs for health care professionals were conducted in the regions “Maritime” and “Central,” standard operating procedures defined all processes in participating laboratories (regional, national and external reference laboratories) as well as the interaction between laboratories and partners in the field. Microscopy was conducted at regional level and slides were subjected to EQA at national and external reference laboratories. For PCR analysis, sample pairs were collected and subjected to a dry-reagent-based IS2404-PCR (DRB-PCR) at national level and standard IS2404 PCR followed by IS2404 qPCR analysis of negative samples at the external reference laboratory.Principal FindingsThe inter-laboratory concordance rates for microscopy ranged from 89% to 94%; overall, microscopy confirmed 50% of all suspected BUD cases. The inter-laboratory concordance rate for PCR was 96% with an overall PCR case confirmation rate of 78%. Compared to a previous study, the rate of BUD patients with non-ulcerative lesions increased from 37% to 50%, the mean duration of disease before clinical diagnosis decreased significantly from 182.6 to 82.1 days among patients with ulcerative lesions, and the percentage of category III lesions decreased from 30.3% to 19.2%.ConclusionsHigh inter-laboratory concordance rates as well as case confirmation rates of 50% (microscopy), 71% (PCR at national level), and 78% (including qPCR confirmation at external reference laboratory) suggest high standards of BUD diagnostics. The increase of non-ulcerative lesions, as well as the decrease in diagnostic delay and category III lesions, prove the effect of comprehensive EQA and training measures involving also procedures outside the laboratory.
BackgroundAs the major burden of Buruli ulcer disease (BUD) occurs in remote rural areas, development of point-of-care (POC) tests is considered a research priority to bring diagnostic services closer to the patients. Loop-mediated isothermal amplification (LAMP), a simple, robust and cost-effective technology, has been selected as a promising POC test candidate. Three BUD-specific LAMP assays are available to date, but various technical challenges still hamper decentralized application. To overcome the requirement of cold-chains for transport and storage of reagents, the aim of this study was to establish a dry-reagent-based LAMP assay (DRB-LAMP) employing lyophilized reagents.Methodology/Principal FindingsFollowing the design of an IS2404 based conventional LAMP (cLAMP) assay suitable to apply lyophilized reagents, a lyophylization protocol for the DRB-LAMP format was developed. Clinical performance of cLAMP was validated through testing of 140 clinical samples from 91 suspected BUD cases by routine assays, i.e. IS2404 dry-reagent-based (DRB) PCR, conventional IS2404 PCR (cPCR), IS2404 qPCR, compared to cLAMP. Whereas qPCR rendered an additional 10% of confirmed cases and samples respectively, case confirmation and positivity rates of DRB-PCR or cPCR (64.84% and 56.43%; 100% concordant results in both assays) and cLAMP (62.64% and 52.86%) were comparable and there was no significant difference between the sensitivity of the assays (DRB PCR and cPCR, 86.76%; cLAMP, 83.82%). Likewise, sensitivity of cLAMP (95.83%) and DRB-LAMP (91.67%) were comparable as determined on a set of 24 samples tested positive in all routine assays.Conclusions/SignificanceBoth LAMP formats constitute equivalent alternatives to conventional PCR techniques. Provided the envisaged availability of field friendly DNA extraction formats, both assays are suitable for decentralized laboratory confirmation of BUD, whereby DRB-LAMP scores with the additional advantage of not requiring cold-chains. As validation of the assays was conducted in a third-level laboratory environment, field based evaluation trials are necessary to determine the clinical performance at peripheral health care level.
BackgroundThe emergence of avian influenza A/H5N1 in 2003 as well as the pandemic influenza A (H1N1) pdm09 highlighted the need to establish influenza sentinel surveillance in Togo. The Ministry of Health decided to introduce Influenza to the list of diseases with epidemic potential. By April 2010, Togo was actively involved in influenza surveillance. This study aims to describe the implementation of ILI surveillance and results obtained from April 2010 to December 2012.MethodsTwo sites were selected based on their accessibility and affordability to patients, their adequate specimen storage capacity and transportation system. Patients with ILI presenting at sentinel sites were enrolled by trained medical staff based on the World Health Organization (WHO) case definitions. Oropharyngeal and nasopharyngeal samples were collected and they were tested at the National Influenza Reference Laboratory using a U.S. Centers for Disease Control and Prevention (CDC) validated real time RT-PCR protocol. Laboratory results and epidemiological data were reported weekly and shared with all sentinel sites, Ministry of Health, Division of Epidemiology, WHO and CDC/NAMRU-3.ResultsFrom April 2010 to December 2012, a total of 955 samples were collected with 52% of the study population aged between 0 and 4 years. Of the 955 samples, 236 (24.7%) tested positive for influenza viruses; with 136 (14.2%) positive for influenza A and 100 (10.5%) positive for influenza B. The highest influenza positive percentage (30%) was observed in 5–14 years old and patients aged 0–4 and >60 years had the lowest percentage (20%). Clinical symptoms such as cough and rhinorrhea were associated more with ILI patients who were positive for influenza type A than influenza type B. Influenza viruses circulated throughout the year with the positivity rate peaking around the months of January, May and again in October; corresponding respectively to the dry-dusty harmattan season and the long and then the short raining season. The pandemic A (H1N1) pdm09 was the predominantly circulating strain in 2010 while influenza B was the predominantly circulating strain in 2011. The seasonal A/H3N2 was observed throughout 2012 year.ConclusionsThis study provides information on influenza epidemiology in the capital city of Togo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.