Financial products are priced using risk-neutral expectations justified by hedging portfolios that (as accurate as possible) match the product’s payoff. In insurance, premium calculations are based on a real-world best-estimate value plus a risk premium. The insurance risk premium is typically reduced by pooling of (in the best case) independent contracts. As hybrid life insurance contracts depend on both financial and insurance risks, their valuation requires a hybrid valuation principle that combines the two concepts of financial and actuarial valuation. The aim of this paper is to present a novel three-step projection algorithm to valuate hybrid contracts by decomposing their payoff in three parts: a financial, hedgeable part, a diversifiable actuarial part, and a residual part that is neither hedgeable nor diversifiable. The first two parts of the resulting premium are directly linked to their corresponding hedging and diversification strategies, respectively. The method allows for a separate treatment of unsystematic, diversifiable mortality risk and systematic, aggregate mortality risk related to, for example, epidemics or population-wide improvements in life expectancy. We illustrate our method in the case of CAT bonds and a pure endowment insurance contract with profit and compare the three-step method to alternative valuation operators suggested in the literature.
Backward stochastic differential equations (BSDEs) appear in many problems in stochastic optimal control theory, mathematical finance, insurance and economics.
This work deals with the numerical approximation of the class of Markovian BSDEs where the terminal condition is a functional of a Brownian motion.
Using Hermite martingales, we show that the problem of solving a BSDE is identical to solving a countable infinite-dimensional system of ordinary differential equations (ODEs).
The family of ODEs belongs to the class of stiff ODEs, where the associated functional is one-sided Lipschitz.
On this basis, we derive a numerical scheme and provide numerical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.