We propose a novel image denoising strategy based on an enhanced sparse representation in transform domain. The enhancement of the sparsity is achieved by grouping similar 2-D image fragments (e.g., blocks) into 3-D data arrays which we call "groups." Collaborative filtering is a special procedure developed to deal with these 3-D groups. We realize it using the three successive steps: 3-D transformation of a group, shrinkage of the transform spectrum, and inverse 3-D transformation. The result is a 3-D estimate that consists of the jointly filtered grouped image blocks. By attenuating the noise, the collaborative filtering reveals even the finest details shared by grouped blocks and, at the same time, it preserves the essential unique features of each individual block. The filtered blocks are then returned to their original positions. Because these blocks are overlapping, for each pixel, we obtain many different estimates which need to be combined. Aggregation is a particular averaging procedure which is exploited to take advantage of this redundancy. A significant improvement is obtained by a specially developed collaborative Wiener filtering. An algorithm based on this novel denoising strategy and its efficient implementation are presented in full detail; an extension to color-image denoising is also developed. The experimental results demonstrate that this computationally scalable algorithm achieves state-of-the-art denoising performance in terms of both peak signal-to-noise ratio and subjective visual quality.
We propose an image restoration technique exploiting regularized inversion and the recent block-matching and 3D filtering (BM3D) denoising filter. The BM3D employs a non-local modeling of images by collecting similar image patches in 3D arrays. The so-called collaborative filtering applied on such a 3D array is realized by transformdomain shrinkage. In this work, we propose an extension of the BM3D filter for colored noise, which we use in a two-step deblurring algorithm to improve the regularization after inversion in discrete Fourier domain. The first step of the algorithm is a regularized inversion using BM3D with collaborative hard-thresholding and the seconds step is a regularized Wiener inversion using BM3D with collaborative Wiener filtering. The experimental results show that the proposed technique is competitive with and in most cases outperforms the current best image restoration methods in terms of improvement in signal-to-noise ratio.
We present a novel approach to still image denoising based on effective filtering in 3D transform domain by combining sliding-window transform processing with block-matching. We process blocks within the image in a sliding manner and utilize the block-matching concept by searching for blocks which are similar to the currently processed one. The matched blocks are stacked together to form a 3D array and due to the similarity between them, the data in the array exhibit high level of correlation. We exploit this correlation by applying a 3D decorrelating unitary transform and effectively attenuate the noise by shrinkage of the transform coefficients. The subsequent inverse 3D transform yields estimates of all matched blocks. After repeating this procedure for all image blocks in sliding manner, the final estimate is computed as weighed average of all overlapping blockestimates. A fast and efficient algorithm implementing the proposed approach is developed. The experimental results show that the proposed method delivers state-of-art denoising performance, both in terms of objective criteria and visual quality.
We propose an effective color image denoising method that exploits ltering in highly sparse local 3D transform domain in each channel of a luminance-chrominance color space. For each image block in each channel, a 3D array is formed by stacking together blocks similar to it, a process that we call "grouping". The high similarity between grouped blocks in each 3D array enables a highly sparse representation of the true signal in a 3D transform domain and thus a subsequent shrinkage of the transform spectra results in effective noise attenuation. The peculiarity of the proposed method is the application of a "grouping constraint" on the chrominances by reusing exactly the same grouping as for the luminance. The results demonstrate the effectiveness of the proposed grouping constraint and show that the developed denoising algorithm achieves state-of-the-art performance in terms of both peak signal-to-noise ratio and visual quality.Index Terms-color image denoising, adaptive grouping, blockmatching, shrinkage.
The shape-adaptive DCT (SA-DCT) can be computed on a support of arbitrary shape, but retains a computational complexity comparable to that of the usual separable block DCT. Despite the near-optimal decorrelation and energy compaction properties, application of the SA-DCT has been rather limited, targeted nearly exclusively to video compression. It has been recently proposed by the authors 8 to employ the SA-DCT for still image denoising. We use the SA-DCT in conjunction with the directional LPA-ICI technique, which defines the shape of the transform's support in a pointwise adaptive manner. The thresholded or modified SA-DCT coe cients are used to reconstruct a local estimate of the signal within the adaptive-shape support. Since supports corresponding to di erent points are in general overlapping, the local estimates are averaged together using adaptive weights that depend on the region's statistics. In this paper we further develop this novel approach and extend it to more general restoration problems, with particular emphasis on image deconvolution. Simulation experiments show a state-of-the-art quality of the final estimate, both in terms of objective criteria and visual appearance. Thanks to the adaptive support, reconstructed edges are clean, and no unpleasant ringing artifacts are introduced by the fitted transform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.