We propose a forecasting approach for solar flares based on data from Solar Cycle 24, taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) mission. In particular, we use the Spaceweather HMI Active Region Patches (SHARP) product that facilitates cut-out magnetograms of solar active regions (AR) in the Sun in near-realtime (NRT), K. Florios cflorios@aueb.gr I. Kontogiannis K. Florios et al.taken over a five-year interval (2012 -2016). Our approach utilizes a set of thirteen predictors, which are not included in the SHARP metadata, extracted from line-of-sight and vector photospheric magnetograms. We exploit several Machine Learning (ML) and Conventional Statistics techniques to predict flares of peak magnitude >M1 and >C1, within a 24 h forecast window. The ML methods used are multi-layer perceptrons (MLP), support vector machines (SVM) and random forests (RF). We conclude that random forests could be the prediction technique of choice for our sample, with the second best method being multi-layer perceptrons, subject to an entropy objective function. A Monte Carlo simulation showed that the best performing method gives accuracy ACC=0.93(0.00), true skill statistic TSS=0.74(0.02) and Heidke skill score HSS=0.49(0.01) for >M1 flare prediction with probability threshold 15% and ACC=0.84(0.00), TSS=0.60(0.01) and HSS=0.59(0.01) for >C1 flare prediction with probability threshold 35%.
Abstract:We show that exact computation of a family of 'max weighted score' estimators, including Manski's max score estimator, can be achieved efficiently by reformulating them as mixed integer programs (MIP) with disjunctive constraints. The advantage of our MIP formulation is that estimates are exact and can be computed using widely available solvers in reasonable time. In a classic work-trip mode choice application our method delivers exact estimates that lead to a different economic interpretation of the data than previous heuristic estimates. In a small Monte Carlo study we find that our approach is computationally efficient for usual estimation problem sizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.