The V-ATPase is a membrane-bound protein complex which pumps protons across the membrane to generate a large proton motive force through the coupling of an ATP-driven 3-stroke rotary motor (V1) to a multistroke proton pump (Vo). This is done with near 100% efficiency, which is achieved in part by flexibility within the central rotor axle and stator connections, allowing the system to flex to minimise the free energy loss of conformational changes during catalysis. We have used electron microscopy to reveal distinctive bending along the V-ATPase complex, leading to angular displacement of the V1 domain relative to the Vo domain to a maximum of ~30°. This has been complemented by elastic network normal mode analysis that shows both flexing and twisting with the compliance being located in the rotor axle, stator filaments, or both. This study provides direct evidence of flexibility within the V-ATPase and by implication in related rotary ATPases, a feature predicted to be important for regulation and their high energetic efficiencies.
The theory of the dual-mode gradient elution in liquid chromatography involving any type of simultaneous changes in column temperature and mobile-phase composition is developed following Drake's approach. The theory was tested in the retention prediction of six alkylbenzenes in aqueous eluting systems modified by acetonitrile. Significant delay phenomena, i.e., a lag between the programmed gradient temperature and the temperature in the oven, and a lag between the oven temperature and the effective temperature the analyte feels in the column, were detected. When these phenomena were taken into account, the retention prediction obtained for all solutes under all dual-mode gradient conditions was excellent. The average percentage error between experimental and predicted retention times is below to 2%.
The combined effect of temperature, T, and organic modifier concentration, phi, on the retention under gradient conditions in RPLC is studied by considering, both theoretically and experimentally gradients, of phi at constant T and gradients of T at constant phi. Two approaches are examined: in the first approach the prediction of the elution time of a sample solute is based on the isocratic/isothermal properties of this solute. The second approach is based on a direct fitting procedure of a proper retention model to 2-D isocratic/T-gradient or isothermal/phi-gradient retention data. These approaches were tested using alkylbenzes in eluting systems modified by ACN. We found that both approaches can give excellent predictions under certain prerequisites. However, the first approach exhibits the notable advantage that it can be used effectively to predict retention times under any kind of phi-gradients at constant T or T-gradients at constant phi. The second approach has the advantage that it is relatively simple but its applicability is very restricted since its predictions are satisfactory only if the gradients are of the same kind with those used in the fitting procedure and the conditions lie within those used for fitting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.