Autonomous swimmers have been intensively studied in recent years due to their numerous potential applications in many areas ranging from biomedicine to environmental remediation. Their motion is based either on different self-propulsion mechanisms or on the use of various external stimuli. Herein, the synergy between the ion flux around self-electrophoretic Mg/Pt Janus swimmers and an external magnetic field is proposed as an efficient alternative mechanism to power swimmers on the basis of the resulting Lorentz force. A strong magnetohydrodynamic effect is observed due to the orthogonal combination of magnetic field and spontaneous ionic currents, leading to an increase of the swimmer speed by up to 2 orders of magnitude. Furthermore, the trajectory of the self-propelled swimmers can be controlled by the orientation of the magnetic field, due to the presence of an additional torque force caused by a horizontal cation flux along the swimmer edges, resulting in predictable clockwise or anticlockwise motion. In addition, this effect is independent of the swimmer size, since a similar type of rotational motion is observed for macro- and microscale objects.
Actuators controlled by external stimuli have received a lot of attention in recent years. Herein a polymer based dual stimuli actuator is reported, triggered by light and an electric field. This allows better control of actuation, enlarging the field of potential applications, like, for example, in the frame of soft robotics. The actuator is composed of polypyrrole and TiO 2 modified with methylene blue. In an aqueous solution, the resulting freestanding hybrid film shows reversible actuation due to the synergy of light and an applied electric field. Illumination with light produces electron-hole pairs in the TiO 2 layer, which are shuttled to the opposite ends of the actuator by the potential gradient present in the solution. This results in electrochemical oxidation and reduction reactions at the two extremities and consequently in site selective swelling of the polymer, which finally leads to a controlled motion of the actuator, following the principles of logic gate operations. Such synergistically induced switching allows developing original actuation schemes for performing complex mechanical tasks triggered by more than one stimulus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.