The first boundary value problem for a one-dimensional nonlinear heat equation is considered, where the heat conductivity coefficient and the power function of heat sources have a power-law dependence on temperature. For a numerical analysis of this problem, it is proposed to use the method of two-sided approximations based on the method of Green’s functions. After replacing the unknown function, the boundary value problem is reduced to the Hammerstein integral equation, which is considered as a nonlinear operator equation in a semi-ordered Banach space. The conditions for the existence of a single positive solution of the problem and the conditions for two-sided convergence of successive approximations to it are obtained. The developed method is programmatically implemented and researched in solving test problems. The results of the computational experiment are illustrated by graphical and tabular information. The conducted experiments confirmed the efficiency and effectiveness of the developed method that allowed recommending its practical use for solving problems of system analysis and mathematical modeling of nonlinear processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.