In data assimilation, state estimation is not straightforward when the observation operator is unknown. This study proposes a method for composing a surrogate operator for a true operator. The surrogate model is improved iteratively to decrease the difference between the observations and the results of the surrogate model, and a neural network is adopted in the process. A twin experiment suggests that the proposed method outperforms approaches that use a specific operator that is given tentatively throughout the data assimilation process.
In data assimilation, state estimation is not straightforward when the observation operator is unknown. This study proposes a method for composing a surrogate operator when the true operator is unknown. A neural network is used to improve the surrogate model iteratively to decrease the difference between the observations and the results of the surrogate model. A twin experiment suggests that the proposed method outperforms approaches that tentatively use a specific operator throughout the data assimilation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.