Both diastereomeric right-handed (P) and left-handed (M) 310-helices exist in homopeptides having twelve chiral centers at the side-chain bicyclic skeletons.
The
synthesis of a 6-CF3-substituted 2-amino-dihydro-1,3-thiazine
via N,N-diethylaminosulfur trifluoride
(DAST)-mediated cyclization of N-hydroxypropyl thiourea 6 is described. This reaction gave 6-CF3-1,3-thiazine 7 with high chemical yield and chemoselectivity, suppressing
the common byproduct of oxazine 8. This new protocol
enabled access to 6-CF3-substituted 1,3-thiazine β-secretase
inhibitor 2.
Chiral bicyclic α‐amino acid (R,R)‐Ab5,6=c with stereogenic centers at the γ‐position of fused‐ring junctions, and its enantiomer (S,S)‐Ab5,6=c, were synthesized. The CD spectra of (R,R)‐Ab5,6=c oligomers indicated that the (R,R)‐Ab5,6=c hexapeptide formed a mixture of right‐handed (P)‐ and left‐handed (M)‐310‐helices, while, in the (R,R)‐Ab5,6=c nonapeptide, a right‐handed (P)‐310‐helix slightly dominated over the (M)‐helix. X‐Ray crystallographic analyses of (S,S)‐tripeptide and (R,R)‐hexapeptide revealed that both the tripeptide and hexapeptide formed a mixture of (P)‐ and (M)‐310‐helices, respectively. These results indicated that the side‐chain environments around the stereogenic centers are particularly important to control the helical‐screw handedness of foldamers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.