Transcriptional elongation is critical for gene expression regulation during embryogenesis. The super elongation complex (SEC) governs this process by mobilizing paused RNA polymerase II (RNAP2). Using exome sequencing, we discovered missense mutations in AFF4, a core component of the SEC in three unrelated probands with a novel syndrome that phenotypically overlaps Cornelia de Lange syndrome (CdLS), that we have named CHOPS syndrome (C for Cognitive impairment and Coarse facies, H for Heart defects, O for Obesity, P for Pulmonary involvement and S for Short stature and Skeletal dysplasia). Transcriptome and chromatin immunoprecipitation sequencing (ChIP-seq) analyses demonstrated similar alterations of genome-wide binding of AFF4, cohesin and RNAP2 between CdLS and CHOPS syndrome. Direct molecular interaction between SEC, cohesin and RNAP2 was demonstrated. This data supports a common molecular pathogenesis for CHOPS syndrome and CdLS caused by disturbance of transcriptional elongation due to alterations in genome-wide binding of AFF4 and cohesin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.