Morphology and crystal lattice of precipitates formed in the 6000 series Al-Mg-Si alloys containing Cu and transition metals of Cr and Fe (TM) after aging at 523 K were investigated by high-resolution transmission microscopy (HRTEM). The precipitates in the Cu-bearing alloys are more finely and densely distributed than those in the Cu-free alloys, whereas those in the TM-bearing alloys were coarser and formed inhomogeneously at the interfaces between the dispersoids and the matrix. Three kinds of metastable phases were detected by HRTEM as follows: β -phase in the balanced alloy, the TYPE-B precipitate in the excess-Si alloy, and Q -phase in the Cu-bearing alloys. No significant difference in between the precipitates in the TM-free alloys and in the TM-bearing alloys was observed. However, the Type-B precipitate in the excess-Si alloy was replaced with the β -phase by the addition of TM. This suggests that the chemical composition of the excess-Si alloy changes to the balanced composition, because the excess Si in the matrix has been consumed by the formation of the AlSi(Fe, Cr) and AlSiFe dispersoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.